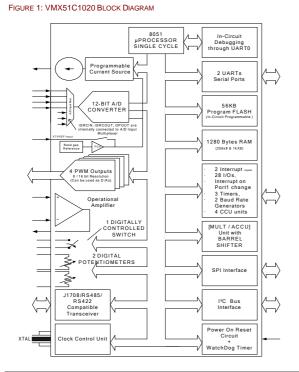
Datasheet

Rev 2.12

Versa Mix 8051 Mixed-Signal MCU

Overview

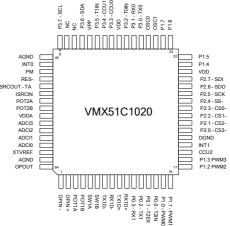

The VMX51C1020 is a fully integrated mixed-signal microcontroller that provides a "one-chip solution" for a broad range of signal conditioning, data acquisition, processing, and control applications. The VMX51C1020 is based on a powerful single-cycle, RISC-based, 8051 microprocessor with an enhanced MULT/ACCU unit that can be used to perform complex mathematical operations.

On-chip analog peripherals such as: an A/D converter, PWM outputs (that can be used as D/A converters), a voltage reference, a programmable current source, an uncommitted operational amplifier, digital potentiometers and an analog switch makes the VMX51C1020 ideal for analog data acquisition applications.

The inclusion of a full set of digital interfaces such as an enhanced fully configurable SPI, an I²C interface, UARTs and a J1708/RS-485/RS-422 compatible differential transceiver, enables total system integration.

Applications

- Automotive Applications 0
- Industrial Controls / Instrumentation 0
- **Consumer Products** 0
- 0 Intelligent Sensors Medical Devices
- 0



Feature Set

- 8051 Compatible RISC performance Processor. 0
- Integrated Debugger 0
- 56KB Flash Program Memory 0
- 1280 Bytes of RAM 0
- MULT/ACCU unit including a Barrel Shifter 0 Provides DSP capabilities 0
- 2 UART Serial Ports 0
- 2 Baud Rate Generators for UARTs 0
- Differential Transceiver connected to UART1 0
- J1708/RS-485/RS-422 compatible. Enhanced SPI interface (Master/Slave) 0
- Fully Configurable 0
 - Controls up to 4 slave devices 0
- I2C interface 0 0
 - 28 General Purpose I/Os
- 2 External Interrupt Inputs 0
- Interrupt on Port 1 pin change 0
- 0 3, 16-bit Timers/Counters
- 4 Compare & Capture Units with 3 Capture Inputs 0
- 4 PWM outputs, 8-bit / 16-bit resolution 0
- 4 ext. + 3 int. Channel 12-bit A/D Converter 0
 - Conversion rate up to 10kHz 0 0-2.7 Volt Input range Continuous / 0
 - One-Shot operation
 - Single or 4-channel automatic sequential conversions
 - On-Chip Voltage Reference
- Programmable Current Source 0
- **Operational Amplifier** 0
- 2 Digital Potentiometers 0
- 1 Digitally Controlled Switch 0
- Power Saving Features + Clock Control 0
- Power-on Reset with Brown-Out Detect 0
- Watchdog Timer 0

0

FIGURE 2: VMX51C1020 QFP-64 PACKAGE PINOUT

http://www.ramtron.com

? MCU customer service: 1-800-943-4625, 1-514-871-2447, ext. 208

1850 Ramtron Drive Colorado Springs Colorado, USA, 80921 ?

Ramtron International Corporation

1-800-545-FRAM, 1-719-481-7000

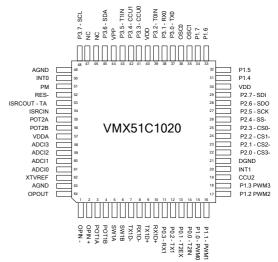
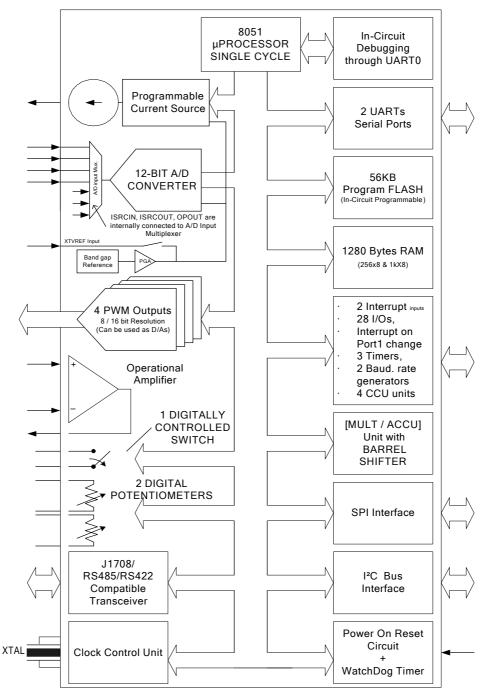

VMX51C1020 Pins Description

Table 1: Pin out description

PIN	NAME	FUNCTION
1	OPIN-	Inverting Input of the Operational Amplifier
2	OPIN+	Non-inverting Input of the Operational Amplifier
3	POT1A	Digitally Controlled Potentiometer 1A
4	POT1B	Digitally Controlled Potentiometer 1B
5	SW1A	Digitally Controlled Switch 1A
6	SW1B	Digitally Controlled Switch 1B
7	TX1D-	RS-485/RS422 compatible differential Transmitter, Negative side
8	RX1D-	RS-485/RS422 compatible differential Receiver Negative side
9	TX1D+	RS-485/RS422 compatible differential Transmitter, Positive side
10	RX1D+	RS-485/RS422 compatible differential Receiver Positive side
11	P0.3-RX1	I/O - Asynchronous UART1 Receiver Input
12	P0.2-TX1	I/O - Asynchronous UART1 Transmitter Output
13	P0.1- T2EX	I/O -Timer/Counter 2 Input
14	P0.0-T2IN	I/O -Timer/Counter 2 Input
15	P1.0- PWM0	I/O - Pulse Width Modulator output 0
16	P1.1- PWM1	I/O - Pulse Width Modulator output 1
17	P1.2- PWM2	I/O - Pulse Width Modulator output 2
18	P1.3- PWM3	I/O - Pulse Width Modulator output 3
19	CCU2	Capture and Compare Unit 2 Input
20	INT1	Interrupt Input 1
21	DGND	Digital Ground
22	P2.0-CS3-	I/O - SPI Chip Enable Output (Master Mode)
23	P2.1-CS2-	I/O - SPI Chip Enable Output (Master Mode)
24	P2.2-CS1-	I/O - SPI Chip Enable Output (Master Mode)
25	P2.3-CS0-	I/O - SPI Chip Enable Output (Master Mode)
26	P2.4-SS-	I/O - SPI Chip Enable Output (Slave Mode)
27	P2.5-SCK	I/O - SPI Clock (Input in Slave Mode)
28	P2.6-SDO	I/O - SPI Data Output Bus
29	P2.7-SDI	I/O - SPI Data Input Bus
30	VDD	Digital Supply
31	P1.4	I/O
32	P1.5	I/O
33	P1.6	I/O
34	P1.7	I/O
35	OSC1	Oscillator Crystal Output
36	OSC0	Oscillator Crystal input/External Clock Source Input
37	P3.0-TX0	I/O - Asynchronous UART0 Transmitter Output
38	P3.1-RX0	I/O - Asynchronous UART0 Receiver Input

PIN	NAME	FUNCTION
39	P3.2-T0IN	I/O - Timer/Counter 0 Input
40	VDD	5V Digital
41	P3.3- CCU0	I/O - Capture and Compare Unit 0 Input
42	P3.4- CCU1	I/O - Capture and Compare Unit 1 Input
43	P3.5-T1IN	I/O - Timer/Counter 1 Input
44	VPP	Flash Programming Voltage Input
45	P3.6-SDA	I/O - I2C / Prog. Interface Bi-Directional Data Bus
46	NC	Not Connected, leave floating
47	NC	Not Connected
48	P3.7-SCL	I/O - I2C / Prog. Interface Clock
49	AGND	Analog Ground
50	INT0	External interrupt Input (Negative Level or Edge Triggered)
51	PM	Mode Control Input
52	RES-	Hardware Reset Input (Active low)
53	ISRCOUT- TA	Programmable Current Source Analog Output
54	ISRCIN	Programmable Current Source Input
55	POT2A	Digitally Controlled Potentiometer 2A
56	POT2B	Digitally Controlled Potentiometer 2B
57	VDDA	Analog Supply
58	ADCI3	Analog to Digital Converter ext. Input 3
59	ADCI2	Analog to Digital Converter ext. Input 2
60	ADCI1	Analog to Digital Converter ext. Input 1
61	ADCI0	Analog to Digital Converter ext. Input 0
62	XTVREF	External Reference Voltage Input
63	AGND	Analog Ground
64	OPOUT	Output of the Operational Amplifier


FIGURE 3: VMX51C1020 PINOUT

VMX51C1020 Block Diagram

FIGURE 4: VMX51C1020 BLOCK DIAGRAM

www.ramtron.com

RAMTRON

Absolute Maximum Ratings

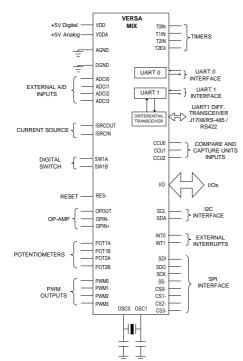
V_{DD} to DGND	–0.3V, +6V	Digital Output Voltage to DGND	-0.3V, V _{DD} +0.3V
V _{DDA} to DGND	-0.3V, +6V	V _{PP} to DGND	+13V
AGND to DGND	-0.3V, +0.3V	Power Dissipation	
V _{DD} to V _{DDA}	-0.3V, +0.3V	 To +70°C 	1000mW
ADCI (0-3) to AGND	-0.3V, V _{DDA} +0.3V		
XTVREF to AGND	-0.3V, V _{DDA} +0.3V	Operating Temperature Range	0° to +70°C
Digital Input Voltage to	-0.3V, V _{DD} +0.3V	Storage Temperature Range	–65°C to +110°C
DGND			
RS422/485 Minimum and Maximum Voltages	-2V, +7V	Lead Temperature (soldering, 10sec)	+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

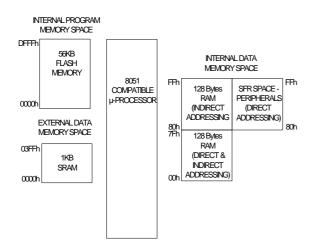
Electrical Characteristics

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
GENERAL CHARACTERISTIC	S (V _{DD} = +5V, V _I	_{DDA} = +5V, T _A = +25°C	, 14.75MHz ir	nput clock, unle	ess otherwis	se noted.)
Power Supply Voltage	V _{DD}		4.75	5.0	5.5	V
	V _{DDA}		4.5	5.0	5.5	V
Power Supply Current	I _{DD (14.75MHz)}		5		45*	mA
	I _{DD (1MHz)}		0.6		6*	*Depends on clock speed and peripheral use and load
	I _{DDA}		0.1		5*	
Flash Programming Voltage	V _{PP}		11		13	V
DIGITAL INPUTS						
Minimum High-Level input	VIH	$V_{DD} = +5V$		2.0		V
Maximum Low-Level input	V _{IL}	$V_{DD} = +5V$		0.8		V
Input Current	I _{IN}			±0.05		μA
Input Capacitance	CIN			5	10	pF
DIGITAL OUTPUTS						
Minimum High-Level Output Voltage	V _{OH}	$I_{SOURCE} = 4mA$		4.2		V
Maximum Low-Level Output Voltage	V _{OL}	I _{SINK} = 4mA		0.2		V
Output Capacitance	C _{OUT}			10	15	Pf
Tri-state Output Leakage Current	l _{oz}				0.25	μA

ANALOG INPUTS						
ADCI(0-3) Input Voltage Range	V _{ADCI}		0		2.7	V
ADCI(0-3) Input Resistance	RADCI			100		Mohms (design)
ADCI(0-3) Input Capacitance	C _{ADCI}			7		pF
ADCI(0-3) Input Leakage Current	I _{ADCI}			TBD		nA
Channel-to-Channel Crosstalk					-72 (12 bit)	dB (design)
ANALOG OUTPUT						
TA Output Drive Capabilities	V _{TA=} V _{ADCI(0-3)}		10			kOhms
(Maximum Load Resistance)	Others	Requires buffering		25M		
CURRENT SOURCE						
SRC Current Drive REFISRC200	I _{ISRC200}			33	66	μA (design)
ISRC Current Drive REFISRC800	I _{ISRC800}			133	500	μA
SRC Feedback voltage 200mV	REF _{ISRC200}		195		205	mV
SRC Feedback voltage 800mV	REF _{ISRC800}		799		803	mV
ISRC Output Resistance	R _{ISRC}			50		MOhms
ISRC Output Capacitance	CISRC			25		pF
ISRCIN Input Reference Resistance	R _{RESIN}			100		Mohms
ISRCIN Input Reference Capacitance	C _{RESIN}			7		pF
ISRC stability	Drift				2.5	%
Allowable sensor capacitance between ISRCIN & ISRCOUT					1000	PF
Allowable capacitance between ISRCOUT & GND					100	pF
INTERNAL REFERENCE	•					
Bandgap Reference Voltage			1.18	1.23V	1.28	V
Bandgap Reference Tempco				100		ppm/°C
EXTERNAL REFERENCE	•					
Input Impedance	R _{XTVREF}			150		kOhms
PGA	•					
PGA Gain adjustment			2.11		2.29	
ANALOG TO DIGITAL CONVER External Reference, TA=25C, Fosc = 14.75						
ADC Resolution				12		Bits
Differential Non linearity	DNL				±1.5	LSB
Integral Non linearity	INL		-1		+4	LSB
Full-Scale Error (Gain Error)		All channels, ADCI(0-3)		±4		LSB
Offset Error		All channels, ADCI(0-3)		±1		LSB
Channel-to-Channel Mismatch		All channels, ADCI(0-3)		±1		LSB
Sampling Rate		Single Channel 4 Channels	1 1		10k 2.5k	Hz
-					2.01	
			5/RS-422			
UART1 DIFFERENTIAL TRANS					+7	V
UART1 DIFFERENTIAL TRANS	VcI		-2	1	+7	V MOhms
UART1 DIFFERENTIAL TRANS				1 30	+7	V MOhms mA


OPERATIONAL AMPLIFIER						
Output Impedance	Zout			20		mOhms
Input Resistance	Zin		36			GOhms
Voltage Gain	Gv			100		dB
Unit Gain Bandwidth	UGBW			5		MHz
Load Resistance to Ground					1	KOhms
Load Capacitance				40		pF
Slew rate	SR			7		V/µs (Design)
Input Offset Voltage	V _{IO}			+/- 2		mV
Input Voltage Range	V _{I®}		0		4	V (Design)
Common Mode Rejection Ratio	CMRRdc	DC	83		99	dB
	CMRR1kHz	Taken at 1kHz		75		dB Design)
Power Supply Rejection Ratio	PSRR	Taken at 1kHz	-75		-94	dB (Design)
		(20dB/decade)	(Vdd)		(Vss)	
Output Voltage Swing (RL=10k)	V _{O (P-P)}		25mV		4.975	V
Short Circuit Current to ground	I _{IC}			86		mA (Design)
DIGITAL POTENTIOMETERS	•					
Number of Steps (8-bit binary weighted)				256		steps
Maximum Resistance			28k	30k	32k	Ohms
Minimum Resistance			485	510	535	Ohms
Step size			105	115	130	Ohms
Inter channel Matching				1		%
Temperature Coefficient				0.16		%/°C
Allowable current (DC)					5	mA
Inherent Capacitance				3		pF
DIGITAL SWITCH						
Switch on Resistance			50		100	Ohms (+/-10%)
Input capacitance				4		pF
Voltage range on Pin			0		5	V
Allowable current (DC)					5	mA
BROWN OUT / RESET CIRCUIT						
Brown-out circuit Threshold			3.7		4.0	V
RES- pin internal Pull-Up				20		KOhms

RAMTRON

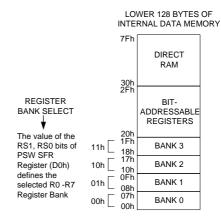

Detailed Description

The following sections will describe the VMX51C1020's architecture and peripherals.

FIGURE 5: INTERFACE DIAGRAM FOR THE VMX51C1020

FIGURE 6: MEMORY ORGANIZATION OF THE VMX51C1020

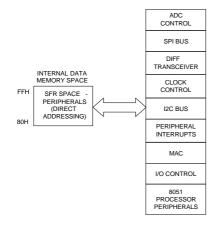
Memory Organization


Figure 6 shows the memory organization of the VMX51C1020.

At power-up/reset, the code is executed from the 56Kx8 Flash memory mapped into the processor's internal Program space.

A 1KB block of RAM is also mapped into the external data memory of the VMX51C1020. This block can be used as general-purpose scratch pad or storage memory. A 256 byte block of RAM is mapped to the internal data memory space. This block of RAM is broken into 2 sub-blocks, with the upper block accessible via indirect addressing and the lower block accessible via both direct and indirect addressing.

The following figure describes the access to the lower block of 128 bytes.


FIGURE 7: LOWER 128 BYTES BLOCK INTERNAL MEMORY MAP

The SFR (Special Function Register) space is also mapped into the upper 128 bytes of internal data memory space. This SFR space is only accessible using direct-access. The SFR space provides the interface to all the on-chip peripherals. This interfacing is illustrated in Figure 8.

<u>Ramtron</u>

FIGURE 8: SFR ORGANIZATION

Dual Data Pointers

The VMX51C1020 includes two data pointers.

The first data pointer (DPTR0) is mapped into SFR locations 82h and 83h and the second data pointer (DPTR1) mapped into SFR locations 84h and 85h. The SEL bit in the data pointer select register, DPS (SFR 86h), selects which data pointer is active. When SEL = 0, instructions that use the data pointer will use DPL0 and DPH0. When SEL = 1, instructions that use the DPTR will use DPL1 and DPH1. SEL is located in bit 0 of the DPS (SFR location 86h - the remaining bits of SFR location 86h are un-used.

All DPTR-related instructions use the currently selected data pointer. In order to switch the active pointer, toggle the SEL bit. The fastest way to do so is to use the increment instruction (INC DPS).

The use of the two data pointers can significantly increase the speed of moving large blocks of data because only one instruction is needed to switch from a source address and destination address.

The SFR locations and register representations related to the dual data pointers are outlined as follows:

	JPHU) DAI	A POINTER	HIGH 0 - S	FR 83H				
15	15 14 13 12 11 10 9 8							
DPH0 [7:0]								
TABLE 4: (DPL0) DATA POINTER LOW 0 - SFR 82H								
1710EE 11 (1		AT OINTER	2011 0 01	10211				
7	6	5	4	3	2	1	0	
7	6	5	4 DPLC	3	2	1	0	

Bit	Mnemonic	Function
15-8	DPH0	Data Pointer 0 MSB
7-0	DPL0	Data Pointer LSB.

TABLE 5: (DPH1) DATA POINTER HIGH 1 - SFR 85H								
15	14	13	12	11	10	9	8	
				1 [7:0]				
			LOW 1 - SF					
7	6	5	4	3	2	1	0	
			DPL1	l [7:0]				
Bit	Mnemo	onic	Functio	n				
15-8	DPH1		Data Po	ointer 1	MSB.			
7-0	DPL1		Data P	ointer 1	LSB.			
TABLE 7: (DPS) DATA	POINTER	SELECT REG	GISTER - SI	-R 86н			
7	6	5	4	3	2	1	0	
0	0	0	0	0	0	0	SEL	
Bit	Mnemo	onic	Function					
7-1	0		Always zero					
0	SEL		0 = DPTR0 is selected					
			1 = DPTR1 is selected					
				s to a ala	hotwoor	both d	oto	
			Used to	loggie	Dermeel	i both da	ald	

MPAGE Register

The MPAGE register controls the upper 8 bits of the targeted address when the MOVX instruction is used for external RAM data transfer. This allows access to the entire external RAM content without using the Data Pointer.

ТАВ	LE 8	: (MPAGE) MEMORY	PAGE - S	FR CFH			
7	7	6	5	4	3	2	1	0
				MF	PAGE [7	7:0]		

User Flags

The VMX51C1020 provides an SFR register that gives the user the ability to define software flags. Each bit of this register is individually addressable. This register may also be used as a generalpurpose storage location. Thus, the user flag feature allows the VMX51C1020 to better adapt to each specific application. This register is located at SFR address F8h

TABLE 9: (USERFLAGS) USER FLAG - SFR F8H

7	6	5	4	3	2	1	0
UF7	UF6	UF5	UF4	UF3	UF2	UF1	UF0

Instruction Set

All VMX51C1020 instructions are function and binary code compatible with the industry standard 8051. However, the timing of instructions may be different. The following two tables describe the instruction set of the VMX51C1020.

TABLE 10: LEGEND FOR INSTRUCTION SET TABLE					
Symbol	Function				
Α	Accumulator				
Rn	Register R0-R7				
Direct	Internal register address				
@Ri	Internal register pointed to by R0 or R1 (except MOVX)				
rel	Two's complement offset byte				
bit	Direct bit address				
#data	8-bit constant				
#data 16	16-bit constant				
addr 16	16-bit destination address				
addr 11	11-bit destination address				

TABLE 11: VMX51C1020 INSTRUCTION SET

Mnemonic Description		Size (bytes)	Instr. Cycles
Arithmetic instructions	•		
ADD A, Rn	Add register to A	1	1
ADD A, direct	Add direct byte to A	2	2
ADD A, @Ri	Add data memory to A	1	2
ADD A, #data	Add immediate to A	2	2
ADDC A, Rn	Add register to A with carry	1	1
ADDC A, direct	Add direct byte to A with carry	2	2
ADDC A, @Ri	Add data memory to A with carry	1	2
ADDC A, #data	Add immediate to A with carry	2	2
SUBB A, Rn	Subtract register from A with borrow	1	1
SUBB A, direct	Subtract direct byte from A with borrow	2	2
SUBB A, @Ri	Subtract data mem from A with borrow	1	2
SUBB A, #data	Subtract immediate from A with borrow	2	2
INC A	Increment A	1	1
INC Rn	Increment register	1	2
INC direct	Increment direct byte	2	3
INC @Ri	Increment data memory	1	3
DEC A	Decrement A	1	1
DEC Rn	Decrement register	1	2
DEC direct	Decrement direct byte	2	3
DEC @Ri	Decrement data memory	1	3
INC DPTR	Increment data pointer	1	1
MUL AB	Multiply A by B	1	5
DIV AB	Divide A by B	1	5
DA A	Decimal adjust A	1	1
Logical Instructions			
ANL A, Rn	AND register to A	1	1
ANL A, direct	AND direct byte to A	2	2
ANL A, @Ri	AND data memory to A	1	2
ANL A, #data	AND immediate to A	2	2
ANL direct, A	AND A to direct byte	2	3
ANL direct, #data	AND immediate data to direct byte	3	4
ORL A, Rn	OR register to A	1	1
ORL A, direct	OR direct byte to A	2	2
ORL A, @Ri	OR data memory to A	1	2
ORL A, #data	OR immediate to A	2	2
ORL direct, A	OR A to direct byte	2	3
ORL direct, #data	OR immediate data to direct byte	3	4
XRL A, Rn	Exclusive-OR register to A	1	1
XRL A, direct	Exclusive OR direct byte to A	2	2
XRL A, @Ri	Exclusive OR data memory to A	1	2
XRL A, #data	Exclusive OR under memory to A	2	2
XRL direct, A	Exclusive-OR A to direct byte	2	3
XRL direct, #data	Exclusive OR immediate to direct byte	3	4
CLR A			1
CPL A	Compliment A	1	1
SWAP A	Swap nibbles of A	1	1
RL A	Rotate A left	1	1
RLC A	Rotate A left through carry	1	1
RRA	Rotate A right	1	1
RRCA	Rotate A right through carry	1	1

Mnemonic	Description	Size (bytes)	Instr. Cycles
Data Transfer Instruction	ns		
MOV A, Rn	Move register to A	1	1
MOV A, direct	Move direct byte to A	2	2
MOV A, @Ri	Move data memory to A	1	2
MOV A, #data	Move immediate to A	2	2
MOV Rn, A	Move A to register	1	2
MOV Rn, direct	Move direct byte to register	2	4
MOV Rn, #data MOV direct, A	Move immediate to register	2	2
MOV direct, A MOV direct, Rn	Move A to direct byte Move register to direct byte	2	3
MOV direct, Rh MOV direct, direct	Move direct byte to direct byte	2	4
MOV direct, @Ri	Move data memory to direct byte	2	4
MOV direct, #data	Move immediate to direct byte	3	3
MOV @Ri. A	Move A to data memory	1	3
MOV @Ri, direct	Move direct byte to data memory	2	5
MOV @Ri, #data	Move immediate to data memory	2	3
MOV DPTR, #data16	Move immediate 16 bit to data pointer	3	3
MOVC A, @A+DPTR	Move code byte relative DPTR to A	1	3
MOVC A, @A+PC	Move code byte relative PC to A	1	3
MOVX A, @Ri	Move external data (A8) to A	1	3-10
MOVX A, @DPTR	Move external data (A16) to A	1	3-10
MOVX @Ri, A	Move A to external data (A8)	1	4-11
MOVX @DPTR, A	Move A to external data (A16)	1	4-11
PUSH direct	Push direct byte onto stack	2	4
POP direct	Pop direct byte from stack	2	3
XCH A, Rn	Exchange A and register	1	2
XCH A, direct	Exchange A and direct byte	2	3
XCH A, @Ri	Exchange A and data memory	1	3
XCHD A, @Ri	Exchange A and data memory nibble	1	3
Branching Instructions			
ACALL addr 11	Absolute call to subroutine	2	6
LCALL addr 16	Long call to subroutine	3	6
RET	Return from subroutine	1	4
RETI	Return from interrupt	1	4
AJMP addr 11	Absolute jump unconditional	2	3
LJMP addr 16	Long jump unconditional	3	4
SJMP rel	Short jump (relative address)	2	3
JC rel	Jump on carry = 1	2	3
JNC rel	Jump on carry = 0	2	3
JB bit, rel	Jump on direct bit = 1	3	4
JNB bit, rel	Jump on direct bit = 0	3	4
JBC bit, rel	Jump on direct bit = 1 and clear	3	4
JMP @A+DPTR	Jump indirect relative DPTR	1	2
JZ rel	Jump on accumulator = 0	2	3
JNZ rel	Jump when accumulator not equal to 0	2	3
CJNE A, direct, rel	Compare A, direct JNE relative	3	4
CJNE A, #data, rel	Compare A, immediate JNE relative	3	4
CJNE Rn, #data, rel	Compare reg, immediate JNE relative	3	4
CJNE @Ri, #data, rel	Compare ind, immediate JNE relative	3	4
DJNZ Rn, rel	Decrement register, JNZ relative	2	3
DJNZ direct, rel	Decrement direct byte, JNZ relative	3	4
Bit Operations			
CLR C	Clear carry flag	1	1
CLR bit	Clear direct bit	2	3
SETB C	Set carry flag	1	1
SETB bit	Set direct bit	2	3
CPL C	Complement carry Flag	1	1
CPL bit	Complement direct bit	2	3
ANL C,bit	Logical AND direct bit to carry flag	2	2
ANL C, /bit	Logical AND between /bit and carry flag	2	2
ORL C,bit	Logical OR bit to carry flag	2	2
	Logical OR /bit to carry flag	2	2
ORL C, /bit			
ORL C, /bit MOC c,bit	Copy direct bit location to carry flag	2	2
	Copy direct bit location to carry flag Copy carry flag to direct bit location	2	2 3
MOC c,bit MOV bit,C	Copy carry flag to direct bit location	_	
MOC c,bit	Copy carry flag to direct bit location	_	

Special Function Registers

The Special Function Registers (SFRs) control several features of the VMX51C1020. Many of the VMX51C1020 SFRs are identical to the standard 8051 SFRs. However, there are additional SFRs that control the VMX51C1020's specific peripheral features that are not available in the standard 8051.

FR Register SFR Als Bit 0 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Reset Value 0 00 60h - - - - - - 111111111 DP 61h - - - - - 1111111111 DP 63h - - - - - - 0000 01000 PH0 63h - - - - - 0000 00000 PS 89h 0 <	TABLE 12: SPECIAL F	UNCTION	REGISTERS								
ap bp c				Dit 6	Dit 5	Dit 4	Dit 2	Dit 0	Dit 1	Dit 0	Report Value
PPL0 8th . <td>SFR Register</td> <td>Adrs</td> <td>BIL /</td> <td>BILO</td> <td>BILD</td> <td>BIL 4</td> <td>BIL 3</td> <td>BIL 2</td> <td>DIL I</td> <td>BIL U</td> <td>Reset value</td>	SFR Register	Adrs	BIL /	BILO	BILD	BIL 4	BIL 3	BIL 2	DIL I	BIL U	Reset value
PHO 82h - - - - - 0000 00000 PHO 83h - - - - 0000 00000 PPL1 84h - - - - 0000 00000 PPL1 84h - - - - 0000 00000 PSE 86h 0	P0	80h	-	-	-	-	-	-	-	-	1111 1111b
PH0 83h - - - - - - 0000 00000 PPL1 85h - - - - - 0000 00000 PPS1 85h 0	SP	81h	-	-	-	-	-	-	-	-	
PPL1 84h ·< · · · · · · · · ·< · ·< ·< ·< ·< ·< ·< ·< ·< ·< ·< ·< ·<		82h	-	-	-	-	-	-	-	-	0000 0000b
PPH1 85h - - - - - - 0000 00000 VCON 87h SMOD - - GF1 GF0 STOP IDLE 0000 00000 VCON 88h TE1 TR1 TR0 IE1 IT1 IE00 IT00 0000 00000 MCDD 88h GATE1 CT1 M11 M01 GATE0 CT0 M10 M000 0000 00000 LO 8Ah - - - - - 0000 00000 NL0 8Ah - - - - 0000 00000 Reserved 8Eh - - - - 0000 00000 Reserved 8Eh - - - 0000 00000 0000 00000 NLOGPWREN 93h TZCLKEN WDOEN MACTI7 COMPINI COMPINI COMPINI COMPINI COMPINI COMPINI COMPINI COMPINI COMPINI NACTIN REVEN	DPH0	83h	-	-	-	-	-	-	-	-	0000 0000b
PFS 86h 0 0 0 0 0 0 SEL 0000 0000b CCON 87h SMOD - - GF1 GF0 STOP IDLE 0000 0000b CCON 88h AF1 CT1 M11 M01 SATE TT1 IE0 IT0 0000 0000b L0 8Ah - - - - - 0000 0000b L0 8Ah - - - - 0000 0000b L1 8Bh - - - - 0000 0000b Reserved 8Eh - - - - 0000 0000b NALOGPWREN 91h TZEWF TZE ADCIF ICOFF SPIEXF SPIE	DPL1	84h	-	-	-	-	-	-	-	-	0000 0000b
CON 670 SMOD - - GF1 GF0 STOP IDLE 0000 0000b MOD 89h TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0 0000 0000b MOD 89h GATE1 CT1 M11 M01 GATE0 CT0 M10 M00 0000 0000b IL1 88h - - - - - - 0000 0000b H1 8Dh - - - - - - 0000 0000b Segreved 8Eh - - - - - - 0000 0000b Segreved 8Fh -<	DPH1	85h	-	-	-	-	-	-	-	-	0000 0000b
CON* B8h TF1 TR1 TR1 TR0 TR0 TR1 TR1 TR0 TR1 TR1 TR0 O00 O000 O00 O O <	DPS	86h	0	0	0	0	0	0	0	SEL	0000 0000b
IMOD 69n GATE1 CT1 M11 M01 GATE0 CT0 M10 M00 0000 0000b L0 8Ah - - - - - - 0000 0000b L1 8Bh - - - - - 0000 0000b H1 8Dh - - - - - 0000 0000b Segerved 8Eh - - - - - 0000 0000b Segerved 8Fh - - - - - 111111111 RCON 91h T2EXiF T2/F COMPRT3 COMPRT3 SPIRXIF/ SPIRXIF Reserved 0000 0000b NALCGPWREN 32h T2CLKEN WDACEN IACEN LACEN VARTSE 0000 0000b 0000 0000 000b 0000 0000 000b 0000 0000b 0000 0000b 000 000 000 000b 000 00 00 00 00 00 00 00 00 00 00 0	PCON	87h	SMOD	-	-	-	GF1	GF0	STOP	IDLE	0000 0000b
L0 8Ah . 1000000000000000000000000000000	TCON*	88h	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0	0000 0000b
L1 88h .	TMOD	89h	GATE1	CT1	M11	M01	GATE0	CT0	M10	M00	0000 0000b
HD 8Ch .	TL0	8Ah	-	-	-	-	-	-	-	-	0000 0000b
H1 BDh 0000 0000b Reserved 8Fh .	TL1	8Bh	-	-	-	-	-	-	-	-	0000 0000b
Seserved BER Constraint	TH0	8Ch	-	-	-	-	-	-	-	-	0000 0000b
Reserved 8Fh 0000 0000b 1'' 90h - - - - - 11111111 RCON 91h T2EXIF TZIF ADCIF/ COMPINITO SPIRXIF - 1111111111 RCON 93h T2CLKEN WDOGEN MACEN COMPINITO SPIRIT COMPINITO SPIRIT 0000 0000b DIGPWREN 93h T2CLKEN WDOGEN MACEN 12CEN SPIEN UARTIDIFFEN	TH1	8Dh	-	-	-	-	-	-	-	-	0000 0000b
11 90h - - - - - 1111 1111 RCON 91h T2EKIF TZIF ADCIP MACIP IDCR/MCIP SPIRXIF Reserved 0000 0000b NALOGPWREN 92h OPAMPEN IISRCEN TAEN ADCEN DAEAN BGAEN 0000 0000b DICPWREN 93h TZCLKEN WDOGEN MACEN IZCEN SPIEN UARTIOREN UARTOEN 0000 0000b DICPWREN 93h - - - - 0000 0110b SORTRST - - - - - 0000 0110b SORELL 96h - - - - - 0000 0000b SORELL 98h SOM0 SOM1 MPCE0 ROEN TOB8 R088 T01 R01 0000 0000b SOREV 98h SOM0 SOM1 MPCE0 ROEN TOB8 R08 T01 R0112000 0000b SOREVEG 98h	Reserved	8Eh									0000 0000b
RCON 91h T2EXIF T2IF ADCIF/ COMPATC INAL/COMPATC SPITXIF Reserved 000000000 INAL/COPWREN 92h OPAMPEN DIGPOTEN ISRCEN TAEN ADCEN PGAEN BGAPEN 000000000000000000000000000000000000	Reserved	8Fh									0000 0000b
Non-Comparison Data L2AP L2AP COMPNT3 COMPNT3 COMPNT4 COMPNT0 SPILA PREAD BGAPEN OD0000000 NALOGOPWREN 93h T2CLKEN WDOGEN MACEN L2CEN SPIEN UARTIDIFEN UARTIGN 0000<00000	P1*	90h	-	-					-	-	
NALOGPWREN 92h OPAMPEN DIGPOTEN ISRCSEL ISRCEN TAELN ADCEN PGAEN BGAPEN 0000 0000b DIGPWREN 93h TZCLKEN WDOGEN MACEN IZCEN SPIEN UARTIEN UARTIEN UARTOEN 0000 0000b DIGPWREN 93h TZCLKEN WDOGEN MACEN IZCEN SPIEN UARTIEN UARTIEN UARTIEN UARTOEN 0000 0000b DIGCURIT 94h SORELL 97h 0 0 0 0 0 0 0 0000 0000b SORELH 97h 0 0 0 0 0 0 0 0 0 0000 0000b 00000 0000b 00000 0000b 00000 0000b 00000 0000b 0000 0000b 00000 0000b 00000 0000b 00000 0000b 0000 0000b	IRCON	91h	T2EXIF	T2IF					SPITXIF	Reserved	0000 0000b
DIGPWREN 39h TZCLKEN WDOGEN MACEN IZOEN SPIEN JARTDEFEN UART1EN UART0EN 0000 0000b SLKDIVCTRL 94h SOFTRST - - - - 0000 0000b SORELL 96h - - - - - 0000 0000b SORELL 96h - - - - - 0000 0100b SORELH 97h 0 0 0 0 0 - - 0000 0000b SORELH 97h - - - - - - 0000 0000b SORDF 98h SOMO SOM1 MPCEO ROEN TOB8 ROB8 TOI ROI 0000 0000b PINACFG 96h P1.7 P1.6 P1.5 P1.4 P1.3PWM30E P1.2PWM30E		001									0000 0000
Description Description <thdescription< th=""> <thdescription< th=""></thdescription<></thdescription<>			-								
NDCCLKDIV 95h - - - - - 0 0 000001100h S0RELL 96h - - - - 11011001b S0RELH 97h 0 0 0 0 - - 0000 0001b S0RELH 97h 0 0 0 - - 0000 0000b S0REU 98h S0M0 S0M1 MPCEO R0EN T088 R088 T01 R01 0000 0000b S0BUF 99h - - - - - - 0000 0000b P010 P0610 P03/RX1INE P0.2/TX10E P0.0/TX11E P0.0/TX11E 0000 0000b 0000 0000b 29INICFG 9bh P1.7/TMSUEL P0.3/T11NE P0.3/TC2UC11EP0.3/CC10EN P3.2/CS1EN P2.1/CS2EN P2.0/CS3EN 0000 0000b 0000 0000b 29TIRCFG 9bh P171EN P16IEN P151EN P141EN P131EN P121EN P111EN P101EN 0000 0000b 20CCONVRMED A4h				WDOGEN	MACEN				•••••		
SORELL 96h - - - - - 111110110 SORELH 97h 0 0 0 0 0 0 0000011b SORELH 97h 0 0 0 0 0 0 00000011b SORELF 99h - - - - 00000000b SOBUF 99h - - - - - 00000000b OPINCFG 98h P0710 P0610 P0510 P0410 P0.2/TX10E P0.1/TZENNE P0.0/TZINE 00000000b 2PINCFG 96h P1.7 P1.6 P1.5 P1.4 P1.3/PWM30E P1.2/PWM20E P1.1/PWM10E P1.0/PWM02E 0000 0000b 00000000b 0000 00000 00000 00000 00000000b 0000 0000b		-		-	-	IKQNORMSPD	WCKDIV_3	WCKDIV_2	WCKDIV_1	MCKDIV_0	
SORELH 97h 0 0 0 0 0 0 - - 0000 001b SORCON* 98h SOM0 SOM1 MPCE0 R0EN T0B8 R0B8 T0I R0I 0000 000bb SORCN* 98h PO7IO PO6IO PO3IC - - - 0000 000bb SORCN* 98h PO7IO PO6IO PO3IC PO3IC PO10D PO3IC PO10D PO3IC PO10D PO3IC PO10D PO3IC PO10D PO3IC PO10D PO3IRXINE PO.2TX10E PO112NEE 0000 0000b PO10D PO3IRXINE PO.2TX10E PO112NEE 0000 0000b PO000 PO00D PO3IRXINE PO.2TX10E PO112NEE PO10D PO3IRXINE PO.2TX10E PO112NEE PO10D PO3IRXINE PO.2TX10E PO112NEE PO10D PO3IRXINE PO.2TX10E PO112NEE PO10D PO3IRXINE PO10D PO3IRXINE PO.2TX10E PO112NEE PO10D PO3IRXINE PO10D PO3IRXINE PO10D PO3IRXINE PO10D PO000						-	-	-	-	-	
SBCCN* 98h S0M0 S0M1 MPCE0 R0N T0B8 R0B8 T0I R0I 0000 0000b 00BUF 99h - - - - - 0000 0000b 0PINCFG 98h P07IO P06IO P03IO P04IP P0.3/RX1NE P0.1/T2EXINE P0.0/T2EXINE P0.0/T2EXINE P0.0/T2EXINE P0.0/T2EXINE P0.0/T02INE 0000 0000b 2PINCFG 9Dh P2.7/SDLEN P2.6/SDCEN P2.5/SCKEN P2.4/SSEN P2.3/CS0EN P2.1/CS2EN P2.0/CS3EN 0000 0000b 2PINCFG 9Dh P2.7/SDLEN P2.6/SDDEN P2.5/SCKEN P2.3/CS0EN P2.2/CS1EN P2.1/CS2EN P2.0/CS3EN 0000 0000b 2PINCFG 9Dh P17EN P16IEN P1.4EN P1.3IEN P1.1EN <											
S0BUF 99h . </td <td></td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>•</td> <td>-</td> <td></td> <td></td> <td></td>		-	-	-	-	-	•	-			
EN2 9Ah - - - - STE 000000b POPINCFG 9Bh P07IO P06IO P05IO P04IO P0.3/RX1INE P0.2/TX10E P0.0/T2INE P0.00000b P1PINCFG 9Ch P1.7 P1.6 P1.5 P1.4 P1.3/PWM30E P1.2/FWM20E P1.1/FWM10E P1.0/FX3EN P0.0/T2INE P0.0/0000000000000000000000000000000000											
OpPINCFG 9Bh P07/O P05IO P04IO P0.3/RX1INE P0.2/TX10E P0.1/TZENINE P0.0/TZENINE			-	-	-	-	-	-	-		
1PIPINCFG 9Ch P1.7 P1.6 P1.5 P1.4 P1.3/PWM30E P1.2/PW120E P1.0/PW100E P1.0/PW100E P0.000 0000b P2PINCFG 9Dh P2.7/SDIEN P2.6/SDOEN P2.5/SCKEN P2.4/CSEN P2.2/CS1EN P2.1/SZEN P2.0/CS2EN P2.1/SZEN P0.000 0000b 20RTIRQEN 9Fh P17IEN P16IEN P15IEN P14IEN P3.2/T0INEN P3.1/RSCEN 0000 0000b 20RTIRQEN 9Fh P17IEN P16IEN P15IEN P14IEN P12IEN P11IEN P10IEN 0000 0000b 20RTIRQEXTA Ahh - - - - - 1111TAT 0000 0000b DCCONVRICW Ash - - - - - 0000 0000b DCCONVRIDE A4h - - - - 0000 0000b DCCONVRIDE A4h - - - - 0000 0000b DCCONVRIDE A4h - - - - - <t< td=""><td></td><td></td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td></td><td></td></t<>			-	-	-	-	-	-	-		
22PINCFG 9Dh P2.7/SDIEN P2.6/SDOEN P2.5/SCKEN P2.3/CS0EN P2.2/CS1EN P2.1/CS2EN P2.0/CS3EN 0000 0000b 3PINCFG 9Eh P3.07X0EN P3.07X0EN 0000 0000b 0000 0000b 3PINCFG 9Eh P3.07X0EN P3.07X0EN 0000 0000b 2PINICRSTAT Afh P17IEN P16IEN P14IEN P13ISTAT P10IEN 0000 0000b DCCTRL A2h ADCIRQCLR XVREFCAP 1 ADCIRQ ADCIE ONECHAN CONT ONESHOT 0000 0000b DCCONVRHOW A3h - - - - - 0000 0000b DCCONVRHIGH A5h - - - - - 0000 0000b DCCONVRHIGH A5h - - - - - 0000 0000b DCCONVRHIGH A5h <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>											
P3PINCFG 9Eh P3.7/MSCLEN P3.6/MSDAEN P3.5/TIINEN P3.4/CCU1EN P3.2/TOINEN P3.1/RX0EN P3.0/TX0EN 0000 0000b PORTIRQEN 9Fh P17IEN P16IEN P14IEN P13IEN P12IEN P11IEN P10IEN 0000 0000b P2* A0h - - - - - - 111111111 P0RTIRQSTAT A1h P17ISTAT P16ISTAT P15ISTAT P13ISTAT P13ISTAT P10ISTAT 0000 0000b DCCONVRLOW A3h - - - - - 0000 0000b DCCONVRLOW A3h - - - - - 0000 0000b DCCONVRHIGH A4h - - - - - 0000 0000b DCCONVRHIGH A5h - - - - - 0000 0000b DCDOLO A6h - - - - - 0000 0000b DCDD1LO A8h EA				-	-						
PORTIRQEN 9Fh P17IEN P16IEN P15IEN P14IEN P13IEN P12IEN P10IEN 0000 0000b P2* A0h - - - - - - 11111111 P2* A0h - - - - - - 11111111 P2* A0h - - - - - - 111111111 PORTIRQEN Alb - - - - - - 111111111 VORTIRQEN AADCIRQCLR XVREFCAP 1 ADCCIRQ ADCCIE ONECHAN CONT ONESHOT 0000 0000b DCCONVRIGH A4h - - - - - 0000 0000b DOCONVRMEJ A4h - - - 0000 0000b DOCONVRMEJ A4h - - - - 0000 0000b DOCONVRMEJ AAbCOHI_ ADCOHI_ ADCOHI_ ADCOHI_ ADCOHI_ ADCOHI_ ADCOHI_ 0000 0000b		-									
22* A0h . <td></td>											
PORTIRQSTAT A1h P17ISTAT P16ISTAT P15ISTAT P13ISTAT P13ISTAT P13ISTAT P11ISTAT P10ISTAT 0000 0000b DDCCTNL A2h ADCIRQCLR XVREFCAP 1 ADCIRQ ADCIE ONECHAN CONT ONESHOT 0000 0000b DDCCONVRIED A4h - - - - - 0000 0000b DDCCONVRIED A4h - - - - 0000 0000b DDCCONVRIED A4h - - - - 0000 0000b DDCCONVRIED A4h - - - - 0000 0000b DDCDONI A6h - - - - 0000 0000b DDCDONI A7h - - - - 0000 0000b DDCD1LO A9h - - - - - 0000 0000b DDCD2HI AAh - - - - 0000 0000b			P17IEN	P16IEN			P13IEN	P12IEN	P11IEN		
ADCCTRL A2h ADCIRQCLR XVREFCAP 1 ADCIRQ ADCIE ONECHAN CONT ONESHOT 0000 0000b ADCCONVRLOW A3h - - - - - - 0000 0000b ADCCONVRLOW A3h - - - - - 0000 0000b ADCCONVRMED A4h - - - - - 0000 0000b ADCDOLO A6h - - - - - 0000 0000b ADCDOLO A6h - - - - - 0000 0000b ADCDOLO A6h - - - - - 0000 0000b ADCDDHI A7h ADCDDHI ADCDOHI_2 ADCDHI_1 ADCDOHI_0 0000 0000b ADCD1HI AAh - - - - - 0000 0000b ADCD1HI AAh - - - - 0000 0000b ADCD2HI_2 <td< td=""><td></td><td></td><td>-</td><td>-</td><td></td><td></td><td>-</td><td>-</td><td>-</td><td></td><td></td></td<>			-	-			-	-	-		
ADCCONVRLOW A3h - - - - - - 0000 0000b DDCCONVRHIGH A4h - - - - - 0000 0000b DDCCONVRHIGH A5h - - - - 0000 0000b DDCDOLO A6h - - - - 0000 0000b DDCDOLO A6h - - - - 0000 0000b DDCDILO A8h EA WDT T2IE SOIE T1E INT1E T0IE INT0IE 0000 0000b DDCD1LO A9h - - - - - 0000 0000b DDCD1LO A9h - - - - - 0000 0000b DDCD2LO A8h - - - - - 0000 0000b DDCD3LO ADh - - - - - 0000 0000b DDCD3LO ADh - - - </td <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>-</td> <td></td> <td>-</td> <td>-</td> <td></td> <td></td>			-			-		-	-		
ADCCONVRMED A4h - - - - - - 0000 0000b DDCCONVRHIGH A5h - - - - - 0000 0000b ADCDOLO A6h - - - - - 0000 0000b ADCDOHI A7h ABCDOHI_3 ADCDOHI_2 ADCDOHI_1 ADCDOHI_0 0000 0000b EN0* A8h EA WDT T2IE SOIE T1IE INT1IE T0IE INT0IE 0000 0000b ADCD1LO A9h - - - - - 0000 0000b ADCD2LO A8h EA WDT T2IE SOIE T1IE INT1IE T0IE INT0IE 0000 0000b ADCD2LO A8h - - - - - - 0000 0000b ADCD3LO ADh - - - - - 0000 0000b ADCD3LO ADh - - -				XVREFCAP			ADCIE	ONECHAN		ONESHOT	
NDCCONVRHIGH A5h - - - - - - 0000 0000b ADCDOLO A6h - - - - - 0000 0000b ADCDOHI A7h A7h ADCDOHI_3 ADCDOHI_3 ADCDOHI_2 ADCDOHI_1 ADCDOHI_0 0000 0000b ADCD1 A8h EA WDT T2IE S0IE T1IE INTIIE T0IE INTOIE 0000 0000b ADCD1HI AAh - - - - - 0000 0000b ADCD2LO A9h - - - - - 0000 0000b ADCD2LO ABh - - - - - 0000 0000b ADCD2LO ABh - - - - - 0000 0000b ADCD3LO ABh - - - - 0000 0000b ADCD3LO ADh - - - - 0000 0000b ADCD3LO				-			-	-		-	
ADCDOLO A6h - - - - - 0000 0000b ADCDOHI A7h A8h EA WDT T2IE SOIE T1IE INT1E T0IE INT0IE 0000 0000b ADCD1LO A9h - - - - - 0000 0000b ADCD1LO A9h - - - - - 0000 0000b ADCD1HI AAh - - - - 0000 0000b ADCD2LO A8h - - - - - 0000 0000b ADCD2LO ABh - - - - - - 0000 0000b ADCD2LO ABh - - - - - 0000 0000b ADCD3LO ABh - - - - - 0000 0000b ADCD3HI ACh - - - - - 0000 0000b Reserved <											
ADCD0HI A7h MDC ADCD0HI_Z ADCD0HI_Z ADCD0HI_Z ADCD0HI_O ADCD0HI_O 0000 0000b EN0* A8h EA WDT T2IE S0IE T1IE INT1IE T0IE INT0IE 0000 0000b ADCD1LO A9h - - - - - - 0000 0000b ADCD1HI AAh ADCD1HI_3 ADCD1HI_2 ADCD1HI_1 ADCD1HI_0 0000 0000b ADCD2LO ABh - - - - - 0000 0000b ADCD2LO ABh - - - - - 0000 0000b ADCD3LO ABh - - - - - 0000 0000b ADCD3LO ADh - - - - - 0000 0000b ADCD3HI AEh ADCD3HI_3 ADCD3HI_2 ADCD3HI_1 ADCD3HI_0 0000 0000b ABServed AFh - - -							-	-	-	-	
EN0* A8h EA WDT T2IE SOIE T1IE INT1IE T0IE INT0IE 0000 0000b ADCD1LO A9h - - - - - 0000 0000b ADCD1HI AAh ADCD1HI_3 ADCD1HI_2 ADCD1HI_1 ADCD1HI_0 0000 0000b ADCD2LO ABh - - - - - 0000 0000b ADCD2LO ABh - - - - - 0000 0000b ADCD2HI ACH ADCD2HI_3 ADCD2HI_2 ADCD2HI_1 ADCD2HI_0 0000 0000b ADCD3IO ADh - - - - - 0000 0000b ADCD3HI AEh ADCD3HI_3 ADCD3HI_2 ADCD3HI_1 ADCD3HI_0 0000 0000b ABserved AFh ADCD3HI_2 ADCD3HI_2 ADCD3HI_0 0000 0000b 3GAPCAL B3h - - - - -			-	-	-	-	-	-	-	-	
ADCD1LO A9h - - - - - - 0000 0000b ADCD1HI AAh ADCD1HI_3 ADCD1HI_2 ADCD1HI_4 ADCD1HI_0 0000 0000b ADCD2LO ABh - - - - - 0000 0000b ADCD2LO ABh - - - - - 0000 0000b ADCD2HI ACh ADCD2HI_3 ADCD2HI_2 ADCD2HI_1 ADCD2HI_0 0000 0000b ADCD3LO ADh - - - - - 0000 0000b ADCD3HI AEh ADCD3HI_3 ADCD3HI_2 ADCD3HI_1 ADCD3HI_0 0000 0000b Reserved AFh ADCD3HI_3 ADCD3HI_2 ADCD3HI_1 ADCD3HI_0 0000 0000b 33* B0h - - - - - 111111111b Reserved B1h 0000 0000b 0000 0000b 00000 0000b 0000									-		
ADCD1HI AAh ADCD1HI ADCD1HI_3 ADCD1HI_2 ADCD1HI_1 ADCD1HI_0 0000 0000b ADCD2LO ABh - - - - - 0000 0000b ADCD2HI ACh ADC ADCD2HI_3 ADCD2HI_2 ADCD2HI_1 ADCD2HI_0 0000 0000b ADCD3LO ADh - - - - - 0000 0000b ADCD3HI AEh ABh - - - - 0000 0000b ADCD3HI AEh ABCD3HI_3 ADCD3HI_2 ADCD3HI_1 ADCD3HI_0 0000 0000b ADCD3HI AEh ABCD3HI_3 ADCD3HI_2 ADCD3HI_1 ADCD3HI_0 0000 0000b Seserved AFh ABh - - - - 1111111111 Reserved B1h I I I101 0001b I101 0001b I101 0001b I101 0001b Reserved B2h I I I101 0001b I101 0001b I101 0001b I101 0001b I10	-						I 1IE	INTILE	TOIE	INTOIE	
ADCD2LO ABh - - - - - - - 0000 0000b ADCD2HI ACh ADCD2HI ADCD2HI_3 ADCD2HI_2 ADCD2HI_1 ADCD2HI_0 0000 0000b ADCD3LO ADh - - - - - 0000 0000b ADCD3HI AEh ADCD3HI_3 ADCD3HI_2 ADCD3HI_1 ADCD3HI_0 0000 0000b ADCD3HI AEh ABh - - - - 0000 0000b Reserved AFh ADCD3HI_3 ADCD3HI_2 ADCD3HI_1 ADCD3HI_0 0000 0000b 33* B0h - - - - - 1111 1111 Reserved B1h 0000 0000b 0000 0000b 3GAPCAL B3h - - - - - Cal. Vector 2GACAL B4h - - - - - Cal. Vector OUTMUXCTRL B5h ADCIN			-	-	-	-	-	-	-	-	
ADCD2HI ACh ADCD2HI ADCD2HI_3 ADCD2HI_2 ADCD2HI_1 ADCD2HI_0 0000 0000b ADCD3LO ADh - - - - - 0000 0000b ADCD3HI AEh AD ADCD3HI_3 ADCD3HI_2 ADCD3HI_1 ADCD3HI_0 0000 0000b Reserved AFh ADC ADCD3HI_3 ADCD3HI_2 ADCD3HI_1 ADCD3HI_0 0000 0000b 23* B0h - - - - - 1111 1111b Reserved B1h - - - - 1111 101001b Reserved B2h 0000 0000b 0000 0000b 3GAPCAL B3h - - - - - Cal. Vector 2GACAL B4h - - - - - Cal. Vector 2GACAL B5h - ADCINSEL_2 ADCINSEL_0 AINEN_3 AINEN_1 AINEN_0 0000 0000b							ADCD1HI_3	ADCD1HI_2	ADCD1HI_1	ADCD1HI_0	
ADCD3LO ADh - - - - - - - 0000 0000b ADCD3HI AEh ADCD3HI AEh ADCD3HI_3 ADCD3HI_2 ADCD3HI_1 ADCD3HI_0 0000 0000b Reserved AFh ADCD3HI_3 ADCD3HI_2 ADCD3HI_1 ADCD3HI_0 0000 0000b P3* B0h - - - - - 11111111b Reserved B1h - - - - 1111110001b Reserved B2h 0000 0000b 0000 0000b 3GAPCAL B3h - - - - - Cal. Vector PGACAL B4h - - - - - Cal. Vector VDUTMUXCTRL B5h - ADCINSEL_2 ADCINSEL_0 AINEN_3 AINEN_2 AINEN_1 AINEN_0 0000 0000b DUTMUXCTRL B6h - - - - TAOUTSEL_2 TAOUTSEL_1 TAOU			-	-	-	-	-	-	-	-	
ADCD3HI AEh ADCD3HI ADCD3HI_3 ADCD3HI_2 ADCD3HI_1 ADCD3HI_0 0000 0000b Reserved AFh Image: Constraint of the served of the ser			ļ	ļ			ADCD2HI_3	ADCD2HI_2	ADCD2HI_1	ADCD2HI_0	
Reserved AFh 0000 0000b 23* B0h - - - - 1111 1111b Reserved B1h 1101 0001b 1101 0001b 1101 0001b 0000 0000b Reserved B2h 1101 0001b 1101 0001b 0000 0000b 0000 0000b 3GAPCAL B3h - - - - - Cal. Vector PGACAL B4h - - - - - Cal. Vector VMUXCTRL B5h - ADCINSEL_2 ADCINSEL_1 ADCINSEL_0 AINEN_3 AINEN_2 AINEN_1 AINEN_0 0000 0000b OUTMUXCTRL B6h - - - - Cal. Vector DUTMUXCTRL B6h - - - - Cal. Vector SWITCHCTRL B7h - - - - Cal. Vector SWITCHCTRL B7h - - - - TAOUTSEL_2 TAOUTSEL_1 TAOUTSEL_0 0000 0000b WUTCHCTRL			-	-	-	-	-	-	-	-	
B0h - - - - - - 1111 1111b Reserved B1h 1101 0001b Reserved B2h 0000 0000b 3GAPCAL B3h - - - - - Cal. Vector PGACAL B3h - - - - - Cal. Vector PGACAL B4h - - - - - Cal. Vector NMUXCTRL B5h - ADCINSEL_2 ADCINSEL_1 ADCINSEL_0 AINEN_3 AINEN_2 AINEN_1 AINEN_0 0000 0000b DUTMUXCTRL B6h - - - - TAOUTSEL_2 TAOUTSEL_1 TAOUTSEL_0 0000 0000b SWITCHCTRL B7h - - - SWITCH1_3 SWITCH1_1 SWITCH1_1 SWITCH1_0 00000 0000b P0* B8h UF8 WDTSTAT IP0.5 IP0.4 IP0.3 IP0.2 IP0.1 IP1.0 00000 0000b <							ADCD3HI_3	ADCD3HI_2	ADCD3HI_1	ADCD3HI_0	
Reserved B1h Image: marginal system B1h Image: marginal system	Reserved										
Reserved B2h 0000 0000b 3GAPCAL B3h - - - Cal. Vector 2GACAL B4h - - - - Cal. Vector 2GACAL B4h - - - - - Cal. Vector 2GACAL B4h - - - - - Cal. Vector 2GACAL B5h - ADCINSEL_2 ADCINSEL_1 ADCINSEL_0 AINEN_3 AINEN_2 AINEN_1 AINEN_0 0000 0000b DUTMUXCTRL B5h - ADCINSEL_2 ADCINSEL_1 ADCINSEL_0 AINEN_3 AINEN_2 AINEN_1 AINEN_0 0000 0000b DUTMUXCTRL B6h - - - - TAOUTSEL_2 TAOUTSEL_1 TAOUTSEL_0 0000 0000b SWITCHCTRL B7h - - - SWITCH1_2 SWITCH1_1 SWITCH1_0 0000 0000b P0* B8h UF8 WDTSTAT IP0.5 IP1.4 IP1.3 IP1.2 IP1.1 IP1.0 00000 0000b	P3*		-	-	-	-	-	-	-	-	
BGAPCAL B3h - - - - - - Cal. Vector PGACAL B4h - - - - - - Cal. Vector PGACAL B4h - - - - - - Cal. Vector NMUXCTRL B5h - ADCINSEL_2 ADCINSEL_0 AINEN_3 AINEN_2 AINEN_1 AINEN_0 0000 0000b DUTMUXCTRL B6h - - - - - TAOUTSEL_2 TAOUTSEL_1 TAOUTSEL_1 0000 0000b SWITCHCTRL B7h - - - - - TAOUTSEL_2 TAOUTSEL_1 TAOUTSEL_0 0000 0000b P0* B8h UF8 WDTSTAT IP0.5 IP0.4 IP0.3 IP0.2 IP0.1 IP0.0 0000 0000b P1 B9h - - IP1.5 IP1.4 IP1.3 IP1.2 IP1.1 IP1.0 0000 0000b	Reserved		ļ	ļ							
PGACAL B4h - - - - - - Cal. Vector NMUXCTRL B5h - ADCINSEL_2 ADCINSEL_1 ADCINSEL_0 AINEN_3 AINEN_2 AINEN_1 AINEN_0 0000 0000b DUTMUXCTRL B6h - - - - TAOUTSEL_2 TAOUTSEL_1 TAOUTSEL_0 0000 0000b SWITCHCTRL B7h - - - - TAOUTSEL_2 TAOUTSEL_1 TAOUTSEL_0 0000 0000b P0* B8h UF8 WDTSTAT IP0.5 IP0.4 IP0.3 IP0.2 IP0.1 IP0.0 0000 0000b P1 B9h - - IP1.5 IP1.4 IP1.3 IP1.2 IP1.1 IP1.0 0000 0000b											
NMUXCTRL B5h - ADCINSEL_2 ADCINSEL_1 ADCINSEL_0 AINEN_3 AINEN_2 AINEN_1 AINEN_0 0000 0000b DUTMUXCTRL B6h - - - - TAOUTSEL_2 TAOUTSEL_1 TAOUTSEL_0 0000 0000b SWITCHCTRL B7h - - - SWITCH1_3 SWITCH1_2 SWITCH1_0 0000 0000b P0* B8h UF8 WDTSTAT IP0.5 IP0.4 IP0.3 IP0.2 IP0.1 IP0.0 0000 0000b P1 B9h - - IP1.5 IP1.4 IP1.3 IP1.2 IP1.1 IP1.0 0000 0000b				-	-	-	-	-	-	-	
DUTMUXCTRL B6h - - - - TAOUTSEL_2 TAOUTSEL_1 TAOUTSEL_0 00000 00000 00000 <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td></td>				-	-	-	-	-	-	-	
SWITCHCTRL B7h - - - SWITCH1_3 SWITCH1_2 SWITCH1_1 SWITCH1_0 0000<			-	ADCINSEL_2	ADCINSEL_1	ADCINSEL_0	_		-	_	
P0* B8h UF8 WDTSTAT IP0.5 IP0.4 IP0.3 IP0.2 IP0.1 IP0.0 0000 0000b P1 B9h - - IP1.5 IP1.4 IP1.3 IP1.2 IP1.1 IP1.0 0000 0000b	OUTMUXCTRL		-	-	-	-					
P1 B9h IP1.5 IP1.4 IP1.3 IP1.2 IP1.1 IP1.0 0000 0000b	SWITCHCTRL										
	IP0*		UF8	WDTSTAT							
DIGPOT1 BAh - - - - - - - 0000 0000b	IP1	B9h	-	-	IP1.5	IP1.4	IP1.3	IP1.2	IP1.1	IP1.0	

	SFR									I
SFR Register	Adrs	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Value
DIGPOT2	BBh	-	-	-	-	-	-	-	-	0000 0000b
ISRCCAL1	BCh	PGACAL0	ISRCCAL1 6	ISRCCAL1 5	ISRCCAL1 4	ISRCCAL1 3	ISRCCAL1 2	ISRCCAL1 1	ISRCCAL1 0	Cal. Vector
ISRCCAL2	BDh	-					ISRCCAL2 2			Cal. Vector
S1RELL	BEh	-	-	-	-	-	-	-	-	0000 0000b
S1RELH	BFh	-	-	-	-	-	-	-	-	0000 0000b
S1CON*	C0h	S1M	reserved	MPCE1	R1EN	T1B8	R1B8	T1I	R1I	0000 0000b
S1BUF	C1h	-	-	-	-	-	-	-	-	0000 0000b
CCL1	C2h	-	-	-	-	-	-	-	-	0000 0000b
CCH1	C3h	-	-	-	-	-	-	-	-	0000 0000b
CCL2	C4h	-	-	-	-	-	-	-	-	0000 0000b
CCH2	C5h	-	-	-	-	-	-	-	-	0000 0000b
CCL3	C6h	-	-	-	-	-	-	-	-	0000 0000b
CCH3	C7h	-	-	-	-	-	-	-	-	0000 0000b
T2CON*	C8h	T2PS	T2PSM	T2SIZE	T2RM1	T2RM0	T2CM	T2IN1	T2IN0	0000 0000b
CCEN	C9h	COCAH3	COCAL3	COCAH2	COCAL2	COCAH1	COCAL1	COCAH0	COCAL0	0000 0000b
CRCL	CAh	-	-	-	-	-	-	-	-	0000 0000b
CRCH	CBh	-	-	-	-	-	-	-	-	0000 0000b
TL2	CCh	-	-	-	-	-	-	-	-	0000 0000b
TH2	CDh	-	-	-	-	-	-	-	-	0000 0000b
Reserved	CEh									
MPAGE	CFh	-	-	-	-	-	-	-	-	0000 0000b
PSW*	D0h	CY	AC	F0	RS1	RS0	OV	reserved	Р	0000 0001b
Reserved	D1h									D1h-D4h =FFh
	То									D5h-D7h = 00h
	D7									
U0BAUD	D8h	BAUDSRC	-	-	-	-	-	-	-	0000 0000b
WDTREL	D9h	PRES					WDTREL_2		WDTREL_0	0000 0000b
I2CCONFIG	DAh	I2CMASKID	I2CRXOVIE	I2CRXDAVIE	I2CTXEMPIE	I2CMANACK	I2CACKMODE	I2CMSTOP	I2CMASTER	0000 0010b
I2CCLKCTRL	DBh	-	-	-	-	-	-	-	-	0000 0000b
I2CCHIPID	DCh	I2CID_6	I2CID_5	I2CID_4	I2CID_3	I2CID_2	I2CID_1	I2CID_0	I2CWID	0100 0010b
I2CIRQSTAT	DDh	I2CGOTSTOP	I2CNOACK	I2CSDA	12CDATACK	I2CIDLE	I2CRXOV	I2CRXAV	I2CTXEMP	0010 1001b
I2CRXTX	DEh	-	-	-	-	-	-	-	-	0000 0000b
Reserved	DFh									0000 0000b
ACC*	E0h	-	-	-	-	-	-	-	-	1110 0000b
SPIRX3TX0	E1h	-	-	-	-	-	-	-	-	0000 0000b
SPIRX2TX1	E2h	-	-	-	-	-	-	-	-	0000 0000b
SPIRX1TX2	E3h	-	-	-	-	-	-	-	-	0000 0000b
SPIRX0TX3	E4h	-	-	-	-	-	-		-	0000 0000b
SPICTRL	E5h	SPICK_2	SPICK_1	SPICK_0	SPICS_1	SPICS_0	SPICKPH	SPICKPOL	SPIMA_SL	0000 0001b
SPICONFIG	E6h	SPICSLO	-	FSONCS3	SPI LOAD	-	SPIRXOVIE	SPIRAAVIE	SPITXEMPIE	0000 0000b
SPISIZE IEN1*	E7h	T2EXIE	CWDT				SPIRXOVIE	SPITEIE	record	0000 0111b
	E8h		SWDT	ADCPCIE SPITXEMPTO	MACOVIE SPISLAVESEL	I2CIE			reserved	0000 0000b
SPIIRQSTAT	E9h	-	-	SPITZEMPTO	SPISLAVESEL	SPISEL	SPIOV	SPIRXAV	SPITXEMP	00011001b
Reserved MACCTRL1	EAh EBh			OVMODE						0000 0000b
MACCO	ECh	LUADPREV	PREVMODE	OVINIODE	OVRDVAL	ADDSRC_1	ADDSRC_0	MULCIMD_1	WOLCIVID_0	0000 0000b
MACC1	EDh	-	-	-	-	-	-	-	-	0000 0000b 0000 0000b
MACC2	EEh	-	-	-	-	-	-	-	-	0000 0000b
MACC2 MACC3	EFh	-	-	-	-	-	-	-	-	0000 0000b
B*	F0h	-	-	-	-	-	-	-	-	0000 0000b
P MACCTRL2				- MACCLR2 0		-	-	MACOV16	- MACOV32	0000 0000b
MACCIRLZ MACA0	F111 F2h	WACCLR2_2	MACCLR2_1	WACCLR2_0	IVIACOV 321E	-	-	IVIACOV 16	IVIACOV32	0000 0000b
MACA0 MACA1	F3h	-	-	-	-	-	-	-	-	0000 0000b
MACAT MACRES0	F3n F4h	-	-	-	-	-	-	-	-	0000 0000b
MACRES0 MACRES1	F4n F5h	-	-	-	-	-	-	-	-	0000 0000b
MACRES1 MACRES2	F6h	-	-	-	-	-	-	-	-	0000 0000b
MACRES2 MACRES3	Fon F7h	-	-	-	-	-	-	-	-	0000 0000b
USERFLAGS*	F8h	UF7	UF6	UF5	UF4	UF3	UF2	UF1	UF0	0000 0000b
MACB0	F9h	- UF7	-	-	- UF4	-	- UF2	- UF I	- UFU	0000 0000b
MACB0 MACB1	FAh	-	-	-	-	-	-	-	-	0000 0000b
MACSHIFTCTRL	FBh	- SHIFTMODE	ALSHSTYLE				- SHIFTAMPL_2		SHIFTAMPI O	0000 0000b
MACPREV0	FCh	-	-	-		-	-	-	-	0000 0000b
MACPREV1	FDh	-	-	-	-	_	-	-	-	0000 0000b
MACPREV2	FEh	-	-	-	-	-	-	-		0000 0000b
MACPREV3	FFh	-	-	-	-	-	-	-	-	0000 0000b
* Bit addressable		1 -	-	1 -	1 -	1 -	-	1 -		

* Bit addressable

RAMTRON

Peripheral Activation Control

Digital Peripheral Power Enable

In order to save power upon reset, many of the digital peripherals of the VMX51C1020 are not activated. The peripherals affected by this feature are:

- o Timer 2 / Port1
- o Watchdog Timer
- MULT/ACCU unit
- o I²C interface
- o SPI interface
- o UARTO
- o UART1
- o Differential Transceiver

Before using any of the above-listed peripherals, they must first be enabled by setting the corresponding bit of the DIGPWREN SFR register to 1.

The same rule applies when accessing a given peripheral's SFR register(s). The targeted peripheral must have been powered on (enabled) first, otherwise the SFR register content will be ignored

The following table shows the structure of the DIGPWREN register.

TABLE 13: (DIGPWREN) DIGITAL PERIPHERALS POWER ENABLE REGISTER - SFR	

93H 7 6 5 4					4		
	7 0 T2CLKEN WDOGE		FN	MACEN	4 I2CEN		
1201		11000		MAGEN	12021		
3		2		1	0		
SPIE	ΞN	UART1DIF	FEN	UART1EN	UART0EN		
		<u> </u>	-				
Bit	Mne	monic		ction			
L _	_			er 2 / PWM En			
7	T:	2CLKEN		Timer 2 CLK s			
				Timer 2 CLK F	Running		
				Watchdog Enable			
6	W	DOGEN	0 = Watchdog Disable				
			1 = Watchdog Enable				
5		MACEN	1 = MULT/ACCU Unit Enable				
Ũ			0 = MULT/ACCU Unit Disable				
4			1= I2C Interface Enable				
4		I2CEN	0 = I2C Interface Disable				
			This bit is merged with CLK STOP bit 1 = SPI interface is Enable				
3		SPIEN	0 = SPI interface is Enable				
			UART1 Differential mode				
2		T1DIFFEN			ii mode		
2	UARTIDIFFEN		0 = Disable 1 = Enable				
			0 = UART1 Disable				
1	U.	ART1EN	1 = UART1 Enable				
				UART0 Disabl			
0	U.	ART0EN	-	UARTO Enable			

Analog Peripheral Power Enable

The analog peripherals, specifically, the op-amp digital potentiometer, current source and analog to digital converter, have a shared dedicated register used for enabling and disabling these peripherals. By default, these peripherals are powered down when the device is reset.

TABLE 14: (ANALOGPWREN) ANALOG PERIPHERALS POWER ENABLE REGISTER -
SFR 92H

7	6	5	4
OPAMPEN	I DIGPOTE	N ISRCS	EL ISRCEN
		-	
2	2	1	0

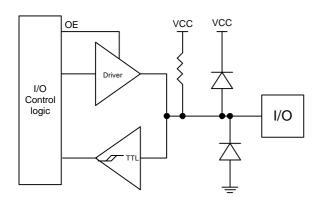
TAEN ADCEN PGAEN BGAPEN

Bit	Mnemonic	Function
7	OPAMPEN	1 = User Op-Amp Enable 0 = User Op-Amp Disable
6	DIGPOTEN	 1 = Digital Potentiometer and Switch Enable 0 = Digital Potentiometer and Switch Disable
5	ISRCSEL	0 = ISRC with 200mV feedback 1 = ISRC with 200mV feedback
4	ISRCEN	1 = ISRC Output Enable 0 = ISRC Output Disable
3	TAEN	1 = TA Output Enable 0 = TA Output Disable
2	ADCEN	1 = ADC Enable 0 = ADC Disable
1	PGAEN	1 = PGA Enable 0 = PGA Disable
0	BGAPEN	1 = Bandgap Enable 0 = Bandgap Disable

Note: The SFR registers associated with all analog peripherals are activated when one or more analog peripherals are enabled.

General Purpose I/O

The VMX51C1020 provides 28 general-purpose I/O pins. The I/Os are shared with digital peripherals and can be configured individually.

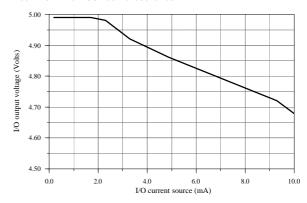

At Reset, all the VMX51C1020 I/O ports are configured as Inputs

The I/O Ports are bi-directional and the CPU can write or read data through any of these ports.

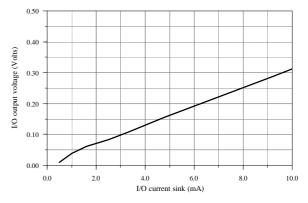
I/O Port Structure

The VMX51C1020 I/O port structure is shown in the following figure.

FIGURE 9 - I/O PORT STRUCTURE

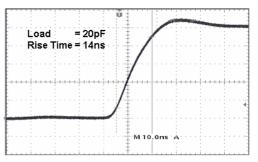

Each I/O pin includes pull-up circuitry (represented by the internal pull-up resistor) and a pair of internal protection diodes connected to VCC and ground, providing ESD protection.


The I/O operational configuration is defined in the I/O control logic block.


I/O Port Drive Capability

Each I/O port pin, when configured as an output is able to source or sink up to 4mA. The following graphs show typical I/O output voltage vs. source and I/O output voltage versus sink current.

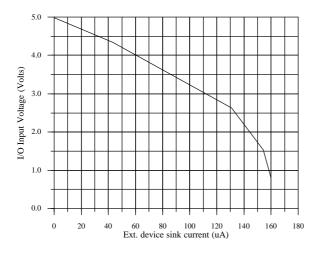
FIGURE 10: TYPICAL I/O VOUT VS. SOURCE CURRENT



The maximum recommended driving current of a single I/O on a given port is 10mA. The recommended limit when more than one I/O on a given port is driving current is 5mA on each I/O. The total current drive of all I/O ports should be limited to 40mA

The following figure shows typical I/O rise time when driving a 20pF capacitive load. In this case, rise time is about 14ns.

RAMTRON


Input Voltage vs. Ext. device sink

The I/Os of the VMIX, when configured as Inputs, include an internal pull-up resistor made of a transistor that ensures the level present at the input is stable when the I/O pin is unconnected.

Due to the presence of the pull-up resistor on the digital inputs, the external device driving the I/O must be able to sink enough current to bring the I/O pin low.

The following figure shows the VMX51C1020 Input port voltage vs. external device sink current.

FIGURE 13: INPUT PORT VOLTAGE VS. EXT DEVICE SINK CURRENT

I/O Port Configuration Registers

The VMX51C1020's I/O port operation is controlled by two sets of four registers which are:

- The Port Pin Configuration registers
- The Port Access registers

The port pin configuration registers combined with specific peripheral configuration will define if a given pin acts as a general purpose I/O or if it provides alternate peripheral functionality.

Before using a peripheral that is shared with I/Os, the pin corresponding to the peripheral output must be configured as an output and the pins that are shared with the peripheral inputs must be configured as inputs.

The following registers are used to configure each of the ports as either general-purpose input, output or alternate peripheral function..

For example, when bit 5 of Port 2 is configured as an output, it will output the SCK signal if the SPI interface is enabled and working.

The only exception to this rule is the l^2C Clock and data bus signals. In these two cases, the VMX51C1020 configures the pins automatically as inputs or outputs.

The POPINCFG register controls the I/O access to UART1, the Timer 2 input and output, as well as defines the direction of the P0 when used as general purpose I/O.

TABLE 15: (P0PINCFG) PORT 0 PORT CONFIGURATION REGISTER - SFR 9BH						
7	6	5	4			
P07IO	P06IO	P05IO	P04IO			

1

0

2

3

P0.3/F	P0.3/RX1INE P0.2/TX1		10E	P0.1/T2EXINE	P0.0/T2INE	
Bit	Mnem	onic	Fun	ction		
7:4	P0xIO		Una	vailable on VMX	(51C1020	
3	P0.3/R	X1INE		eneral purpose ART1 RX	input or	
			Whe	eneral purpose en using UART		
			set	this bit to 0.		
2	P0.2/T	X10E	0: General purpose input 1: General purpose output or UART1 TX			
			When using UART1 you must set this bit to 1.			
1	P0.1/T	2EXINE	Tim	eneral purpose er 2 EX		
			1: General purpose output When using Timer 2EX input you must set this bit to 0.			
0	P0.0/T	2INE	0: General purpose input or Timer 2 IN 1: General purpose output When using Timer 2 inp you must set this bit to 0.			

The P1PINCFG register controls the access from the PWM to the I/O pins as well as defines the direction of the P1 when the PWM's are not used.

TABLE 16: (P1PINCFG) PORT 1 PORT CONFIGURATION REGISTER - SFR 9CH							
7	6	5	4				
P1.7	P1.6	P1.5	P1.4				
3	2	1	0				
P1.3/PWM3OE	P1.2/PWM2OE	P1.1/PWM1OE	P1.0/PWM0OE				

r	1	
Bit	Mnemonic	Function
7	P1.7	0: General purpose input
		1: General purpose output
6	P1.6	0: General purpose input
		1: General purpose output
5	P1.5	0: General purpose input
		1: General purpose output
4	P1.4	0: General purpose input
		1: General purpose output
3	P1.3/PWM3OE	0: General purpose input
		1: General purpose output
		or PWM bit 3 output
		-
		When using PWM you
		must set this bit to 1.
2	P1.2/PWM2OE	0: General purpose input
		1: General purpose output
		or PWM bit 2 output
		When using PWM you
		must set this bit to 1
1	P1.1/PWM1OE	0: General purpose input
		1: General purpose output
		or PWM bit 1 output
		When using PWM you
		must set this bit to 1
0	P1.0/PWM0OE	0: General purpose input
		1: General purpose output
		or PWM bit 0 output
		When using PWM you
		must set this bit to 1

The P2PINCFG register controls the I/O access to SPI interface and defines the direction of the P2 when used as general purpose I/O

P2.	7/SDIEN	P2.6/SD	DOEN	P2.5/SCKEN	P2.4/SSEN		
	3	2		1	0		
P2.3	3/CS0EN	P2.2/CS	1EN	P2.1/CS2EN	P2.0CS3EN		
Bit	Mnemo	onic		ction			
7	P2.7/SDIEN		0: General purpose input or				
	P2.7/SDIEN		SDI				
			1: G	eneral purpose	output		
				en using SPI yo bit to 0.	ou must set		
6	P2.6/S	DOFN		eneral purpose	input		
Ū	1 2.0,0	DOLI		eneral purpose			
				DO			
			Whe	en using SPI yo	ou must set		
			this	bit to 1.			
5	P2.5/S	CKEN		eneral purpose	input or		
			-	СК			
				eneral purpose	output		
				en using SPI yo	ou must set		
				bit to 0.			
4	P2.4/SSEN			eneral purpose	input or		
				lave Select			
			1: G	eneral purpose	output		
			When using SPI SS you must set this bit to 0.				
3	P2.3/C	S0EN	0. C	eneral purpose	input		
U	1 2.0/ 0	00211		eneral purpose			
				hip Select bit 0			
			Ũ		ouput		
				en using SPI C			
2	D2 2/C			st set this bit to			
2	P2.2/C	SIEN		eneral purpose eneral purpose			
				hip Select bit 1			
					oaipui		
				en using SPI C			
1	P2.1/C	COEN		eneral purpose			
I	F2.1/C	JZEN		eneral purpose eneral purpose			
				hip Select bit 2			
					oaipui		
			Whe	en using SPI C	S2 you		
				st set this bit to			
0	P2.0/C	S3EN		eneral purpose			
				eneral purpose			
				hip Select bit 3			
			Whe	en usina SPI C.	S3 vou		
	1		When using SPI CS3 you must set this bit to 1.				

RAMTRSN

The P3PINCFG register controls I/O access to UARTO, the I2C interface, capture compare input0 and 1, Timer 0 and Timer 1 inputs as well as defines the direction of P3 when used as general purpose I/O

|--|

7	6	5	4
P3.7/MSCLEN	P3.6/MSDAEN	P3.5/T1INE N	P3.4/CCU1E N
	·		
3 2		1	0
P3.3/CCU0EN	P3.2/T0INEN	P3.1/RX0EN	P3.0/TX0EN

Dit	Mnomonic	Eurotion
Bit 7	Mnemonic	Function 0: General purpose input
'		1: General purpose output or
		Master I2C SCL output
	P3.7/MSCLEN	Master 12C SCL output
		When using the I2C you must
0		set this bit to 1.
6		0: General purpose input
		1: General purpose output or
	P3.6/MSDAEN	Master I2C SDA
		When using the I2C you must
-		set this bit to 1.
5		0: General purpose input or
		Timer1 Input
	P3.5/T1INEN	1: General purpose output
		When using Timer 1 you must
		set this bit to 0.
4		0: General purpose input or
		CCU1 Input
		1: General purpose output
	P3.4/CCU1EN	
		When using the Compare and
		Capture unit you must set this
		bit to 0.
3		0: General purpose input or
		CCU0 Input
		1: General purpose output
	P3.3/CCU0EN	
		When using the Compare and
		Capture unit you must set this
		bit to 0.
2		0: General purpose input or
		Timer 0 Input
	P3.2/T0INEN	1: General purpose output
		When using Timer 0 you must
		set this bit to 0.
1		0: General purpose input or
		UARTO Rx
	P3.1/RX0EN	1: General purpose output
	. or minore and	
		When using UART0 you must
		set this bit to 0.
0		0: General purpose input
		1: General purpose output or
	P3.0/TX0EN	UART0 Tx
	- 3.0/ I AULIN	
		When using UART0 you must
		set this bit to 1.

Using General Purpose I/O Ports

The VMX51C1020's 28 I/Os are grouped into four ports. For each port an SFR register location is defined. Those registers are bit addressable providing the ability to control the I/O lines individually.

When the port pin configuration register value defines the pin as an output, the value written into the port register will be reflected at the pin level.

Reading the I/O pin configured as input is done by reading the contents of its associated port register.

TABLE 19: PORT 0 - SFR 80H										
7	6	5	4	3	2	1	0			
P0 [7:0]										
PORT 1 - 5	SFR 90H									
7 6 5 4 3 2 1 0										
			P1 [7:0]						
PORT 2 - S	PORT 2 - SFR A0H									
7	6	5	4	3	2	1	0			
			P2	[7:0]						
PORT 3 - S	SFR B0H									
7	6	5	4	3	2	1	0			
P3 [7:0]										
Bit	Bit Mnemonic Function									
7-0	P0, 1,	2, 3			t is conf	0				

7-0	P0, 1, 2, 3	When the Port is configured as an
		output, setting a port pin to 1 will
		make the corresponding pin to
		output logic high.
		When set to 0, the corresponding
		pin will set a logic low.

I/O usage example

The following example demonstrates the configuration of the VMX51C1020 I/Os. //-

//This example continuously reads the P0 and writes its contents into //P1 and it toggle P2 and P3.

#pragma TINY #pragma UNSIGNEDCHAR

#include <VMIXReg.h>

at 0x0000 void main (void)

DIGPWREN = 0x80; P1PINCFG = 0x00: P1PINCFG = 0xFF; P2PINCFG = 0xFF; P3PINCFG = 0xFF;

while(1)

P1 = P0; P2 = ~P2; P3 = ~P3;

// Enable Timer 2 to activate P1 //Output // Configure all P0 as Input //Configure P1 as Output //Configure P2 as Output //Configure P3 as Output

//Write P0 into P1 //Toggle P2 & P3

}//end of main() function

Using Port1.0-3 as General Purpose Output

Port1.0-P1.3 can be used as standard digital outputs. However, in order to do this, the Timer 2 clock must be enabled by setting the

<u>Ramtron</u>

T2CLKEN bit of the DIGPWREN register. In addition, the Timer 2 CCEN register must also have the reset value.

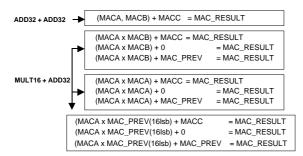
Interrupt on Port1 Change Feature

The VMX51C1020 includes an *Interrupt on Port1 change* feature. This feature can be used to monitor the activity on each I/O Port1 pin (individually) and trigger an interrupt when the state of the pin on which this feature has been activated changes. This is equivalent to having eight individual external interrupt inputs. The Interrupt on Port1 change shares the interrupt vector of the ADC peripheral at address 006Bh.

See the Interrupt section for more details on how to use this feature.

<u>Ramtron</u>

MULT/ACCU - Multiply Accumulator Unit


The VMX51C1020 includes a hardware based multiply-accumulator unit which provides the user the ability to perform fast and complex arithmetic operations.

MULT/ACCU Features:

- Hardware Calculation Engine
- Calculation result is ready as soon as the input registers are loaded
- o Signed mathematical calculations
- Unsigned MATH operations are possible if the MUL engine operands are limited to 15-bits in size
- Auto/Manual reload of MAC_RES
- Enhanced VMX51C1020 MULT/ACCU Unit
- Easy implementation of complex MATH operations
- o 16-bit and 32-bit Overflow Flag
- 32-bit Overflow can raise an interrupt
- MULT/ACCU operand registers can be cleared individually or all together
- Overflow flags can be configured to stay active until manually cleared
- Can store and use results from previous operations

The MULT/ACCU can be configured to perform the following operations:

FIGURE 13: VMX51C1020 MULT/ACCU OPERATION

Where MACA (multiplier), MACB (multiplicand), MACACC (accumulator) and MACRESULT (result) are 16, 16, 32 and 32 bits, respectively.

MULT/ACCU Control Registers

With the exception of the Barrel Shifter, the MULT/ACCU unit operation is controlled by two SFR registers:

- o The MACCTRL1
- o The MACCTRL2

The following two tables describe the details of these control registers.

 TABLE 20: (MACCTRL1) MULT/ACCU UNIT CONTROL REGISTER - SFR EBH

 7
 6
 5
 4

LOADPREV	PREVMODE	OVMODE	OVRDVAL

 3
 2
 1
 0

 ADDSRC [1:0]
 MULCMD [1:0]

Bit	Mnemonic	Function
7	LOADPREV	MACPREV manual Load control
6	PREVMODE	1 = Manual load of the MACPREV register content if PREVMODE = 1 Loading method of MACPREV register
		0 = Automatic load when MACA0 is written. 1 = Manual Load when 1 is written into LOADPREV
5	OVMODE	 0 = Once set by math operation, the OV16 and OV32 flag will remain set until the overflow condition is removed. 1= Once set by math operation, the OV16 and OV32 flag will stay set until it is cleared manually.
4	OVRDVAL	 0 = The value on MACRES is the calculation result. 1 = the value on MACRES is the 32LSB of the MACRES when the OV32 overflow occurred
3:2	ADDSRC[1:0]	32-bit Addition source <u>B Input</u> 00 = 0 (No Add) 01 = C (std 32-bit reg) 10 = RES -1 11 = C (std 32-bit reg) <u>A Input</u> 00=Multiplication 01=Multiplication 10=Multiplication $11=$ Concatenation of {A, B} for 32-bit addition
1:0	MULCMD[1:0]	Multiplication Command 00 = MACA x MACB 01 = MACA x MACA 10 = MACA x MACPREV (16 LSB) 11 = MACA x MACB

1	7 0			5 4				
		MACCLR2	[2:(0]	MACOV32IE			
3		2		1	0			
-		-		MACOV16	MACOV32			
Bit	Mne	monic	F	Function				
7:5	MAG	CCLR[2:0]	Ν	MULT/ACCU R	egister Clear			
			C	000 = No Clear				
			C	001 = Clear MA	CA			
			-	010 = Clear MA				
			-	011 = Clear MA				
			1 1	00 = Clear MA				
				01 = Clear All	MAC regs +			
				Overflow Flags				
					erflow Flags only			
4	MAG	COV32IE		MULT/ACCU 32	2-bit Overflow			
				RQ Enable				
3		-	-					
2		-	-					
1	MAG	COV16		6-bit Overflow				
			-	0 = No 16 overflow 1 = 16-bit MULT/ACCU				
	N 4 4 4		_	Overflow occurr				
0	MAG	COV32		32-bit Overflow				
					ACCU			
			Overflow					
			This automatically loads the MAC32OV register.					
					can generate a			
				MULT/ACCU in				
				enabled.				

TABLE 21: (MACCTRL2) MULT/ACCU UNIT CONTROL REGISTER 2 -SFR F1H 5 4 6

MULT/ACCU Unit Data Registers

The MULT/ACCU Data registers include operand and result registers that serve to store the numbers being manipulated in mathematical operations. Some of these registers are uniquely for addition (such as MACC) while others can be used for all operations. The MULT/ACCU operation registers are represented below.

MACA and MACB Multiplication (Addition) Input Registers

The MACA and MACB register serve as 16-bit input operands when performing multiplication.

When the MULT/ACCU is configured to perform 32-bit addition, the MACA and the MACB registers are concatenated to represent a 32-bit word. In that case the MACA register contains the upper 16-bit of the 32-bit operand and the MACB contains the lower 16-bit

TABLE 22: (MACA0) MULT/ACCU UNIT A OPERAND, LOW BYTE - SFR F2H 6 5 4 3 2 0 MACA0 [7:0

Bit	Mnemo	onic	Fu	nction							
7:0	MACAG)	Lov	Lower segment of the MACA							
			ope	operand							
		MACA1) MULT/ACCU UNIT A OPERAND, HIGH BYTE - SFR F3H									
ABLE 23:	(MACA1)	MULT/AC	CU UNIT /	A OPERAND	, HIGH BY	TE - SFR F	3н				
7	6	5	4	4 3 2 1 0							
MACA1 [15:8]											
Bit	Mnemo	onic	Fu	nction							
15:8	MACA	1	Up	per segme	ent of the	MACA					
				erand		Upper segment of the MACA					
ABLE 24:	(MACB0)	MULT/AC		B OPERAND	, Low Byt	<u>e - SFR F</u>	Эн О				
	· · · · · · · · · · · · · · · · · · ·		CU UNIT I	B OPERAND	()						
	· · · · · · · · · · · · · · · · · · ·	5	CU UNIT I 4 MACI	B OPERAND	()						
7	6	5 onic	CU UNIT I 4 MACI	B OPERAND 3 B0 [7:0]	2	1					
7 Bit	6 Mnemo	5 onic	CU UNIT I 4 MACI Fui	B OPERAND 3 B0 [7:0] nction	2	1					
7 Bit 7:0	6 Mnemo MACB0	5 onic)	CU UNIT I 4 MACI Fui Lov	B OPERAND 3 B0 [7:0] motion wer segme erand	2 ent of the	1 e MACB	0				
7 Bit 7:0	6 Mnemo MACB((MACB1)	5 onic) MULT/AC	CU UNIT I 4 MACI Fui Lov ope	3 OPERAND 3 B0 [7:0] motion wer segme erand 3 OPERAND	2 ent of the	1 MACB	0				
7 Bit 7:0	6 Mnemo MACB0	5 onic)	CU UNIT I 4 MACI Fui Lov ope CU UNIT I 4	B OPERAND 3 B0 [7:0] Inction wer segme erand B OPERAND 3	2 ent of the	1 e MACB	0				
7 Bit 7:0	6 Mnemo MACB((MACB1)	5 onic) MULT/AC	CU UNIT I 4 MACI Fui Lov ope CU UNIT I 4	3 OPERAND 3 B0 [7:0] motion wer segme erand 3 OPERAND	2 ent of the	1 MACB	0				
7 Bit 7:0	6 Mnemo MACB((MACB1)	5 onic) MULT/AC	CU UNIT I 4 MACI Fui Lov ope CU UNIT I 4	B OPERAND 3 B0 [7:0] Inction wer segme erand B OPERAND 3	2 ent of the	1 MACB	0				
7 Bit 7:0	6 Mnemo MACB((MACB1)	5 onic) MULT/AC 5	CU UNIT I 4 MACI Lov ope CU UNIT I 4 MACI	B OPERAND 3 B0 [7:0] Inction wer segme erand B OPERAND 3	2 ent of the	1 MACB	0				
7 Bit 7:0 ⁻ ABLE 25: 7	Mnemc	5 onic) MULT/AC 5	CU UNIT I 4 MACI Fui Lov ope CU UNIT I 4 MACI	B OPERAND 3 B0 [7:0] mction wer segme erand B OPERAND 3 B1 [7:0]	2 ent of the , HIGH BY	MACB	0				

MACC Input Register

The MACC register is a 32-bit register used to perform 32-bit addition.

It's possible to substitute the MACPREV Register for the MACC register or 0 in the 32-bit addition.

TABLE 26: (MACC0) MULT/ACCU UNIT C OPERAND, LOW BYTE - SFR ECH								
7	7 6 5 4 3 2 1 0							
	MACC0 [7:0]							

Bit	Mnemonic	Function
7:0	MACC0	Lower segment of the 32-bit addition register

TABLE 27: (MACC1) MULT/ACCU UNIT C OPERAND, BYTE 1 - SFR EDH									
7	6	5	4	3	2	1	0		
	MACC1 [15:8]								
Bit	Mnemo	onic	Fur	nction					
15:8	MA	ACC1		ver middle lition regis		nt of the 3	32-bit		
TABLE 28:	(MACC2)	MULT/AC	CU UNIT (OPERAND	, BYTE 2 -	SFR EEH			
7	6	5	4	3	2	1	0		
			MACC	2 [23:16]					
Bit	Mnem	onic	Fu	Function					
23:16	M	ACC2		Upper middle segment of the 32-bit addition register					

<u>Ramtron</u>

TABLE 29: (MACC3) MULT/ACCU UNIT C OPERAND, HIGH BYTE - SFR EFH									
7	6	5	4	3	2	1	0		
			MACC3	3 [31:24]					
Bit	Bit Mnemonic			Function					
31:24	1:24 MACC3			Upper segment of the 32-bit addition register					

MACRES Result Register

The MACRES register, which is 32-bits wide, contains the result of the MULT/ACCU operation. In fact, the MACRES register is the output of the Barrel Shifter.

TABLE 30: (MACRES0) MULT/ACCU UNIT RESULT, LOW BYTE - SFR F4H 7 6 5 4 3 2 1 0 MACRES0 [7:0] Bit Mnemonic Function 7:0 MACRES0 Lower segment of the 32-bit MULT/ACCU result register 7 6 5 4 3 2 1 0 TABLE 31: (MACRES1) MULT/ACCU UNIT RESULT, BYTE 1 - SFR F5H 7 6 5 4 3 2 1 0 MACRES1 MULT/ACCU UNIT RESULT, BYTE 1 - SFR F5H 7 6 5 4 3 2 1 0 MACRES1 [15:8] Bit Mnemonic Function 15:8 MACRES2 MULT/ACCU UNIT RESULT, BYTE 2 - SFR F6H 7 6 5 4 3 2 1 0 MACRES2 [23:16] Bit Mnemonic Function TABLE 33: (MACRES3) MULT/ACCU UNIT RESULT, HIGH BYTE - SFR F7H 7 6 5 4 3 2 1 0		(MAACDEG	SOL MILLET/A	COLUMN					
Bit Mnemonic Function 7:0 MACRES0 Lower segment of the 32-bit MULT/ACCU result register TABLE 31: (MACRES1) MULT/ACCU UNIT RESULT, BYTE 1 - SFR F5H 7 6 5 4 3 2 1 0 MACRES1 [15:8] Macres1 [15:8] Macres1 [15:8] 0 Macres1 [15:8] Bit Mnemonic Function 1 15:8 MACRES1 Lower middle segment of the 32-bit MULT/ACCU result register TABLE 32: (MACRES2) MULT/ACCU UNIT RESULT, BYTE 2 - SFR F6H 7 6 5 4 3 2 1 0 MACRES2 [23:16] Macres2 [23:16] Macres2 [23:16] 0 Macres2 [23:16] Bit Mnemonic Function 1 0 MACRES2 [23:16] Bit Macres3 MULT/ACCU UNIT RESULT, HIGH BYTE - SFR F7H 7 6 5 4 3 2 1 0 MACRES3 [31:24] Bit Mnemonic Function 31:24 MACRES3 Upper segment of the 32-bit									
Time Interference 7:0 MACRES0 Lower segment of the 32-bit MULT/ACCU result register TABLE 31: (MACRES1) MULT/ACCU UNIT RESULT, BYTE 1 - SFR F5H 7 6 5 4 3 2 1 0 MACRES1 6 5 4 3 2 1 0 MACRES1 15:8 Memonic Function 15:8 MACRES1 Lower middle segment of the 32-bit MULT/ACCU UNIT RESULT, BYTE 2 - SFR F6H 7 6 5 4 3 2 1 0 MACRES2 MULT/ACCU UNIT RESULT, BYTE 2 - SFR F6H 7 6 5 4 3 2 1 0 MACRES2 [23:16] MACRES2 Upper middle segment of the 32-bit MULT/ACCU result register TABLE 33: (MACRES3) MULT/ACCU UNIT RESULT, HIGH BYTE - SFR F7H 7 6 5 4 3 2 1 0 MACRES3 [31:24] MACRES3 11:24 MACRES3 11:24 0		MACRES0 [7:0]							
Time Interference 7:0 MACRES0 Lower segment of the 32-bit MULT/ACCU result register TABLE 31: (MACRES1) MULT/ACCU UNIT RESULT, BYTE 1 - SFR F5H 7 6 5 4 3 2 1 0 MACRES1 6 5 4 3 2 1 0 MACRES1 15:8 Memonic Function 15:8 MACRES1 Lower middle segment of the 32-bit MULT/ACCU UNIT RESULT, BYTE 2 - SFR F6H 7 6 5 4 3 2 1 0 MACRES2 MULT/ACCU UNIT RESULT, BYTE 2 - SFR F6H 7 6 5 4 3 2 1 0 MACRES2 [23:16] MACRES2 Upper middle segment of the 32-bit MULT/ACCU result register TABLE 33: (MACRES3) MULT/ACCU UNIT RESULT, HIGH BYTE - SFR F7H 7 6 5 4 3 2 1 0 MACRES3 [31:24] MACRES3 11:24 MACRES3 11:24 0									
MULT/ACCU result register TABLE 31: (MACRES1) MULT/ACCU UNIT RESULT, BYTE 1 - SFR F5H 7 6 5 4 3 2 1 0 MACRES1 [15:8] MACRES1 [15:8] Bit Mnemonic Function 15:8 MACRES1 Lower middle segment of the 32-bit MULT/ACCU result register TABLE 32: (MACRES2) MULT/ACCU UNIT RESULT, BYTE 2 - SFR F6H 7 6 5 4 3 2 1 0 MACRES2 [23:16] MACRES2 [23:16] 0 MACRES2 [23:16] Bit Mnemonic Function Upper middle segment of the 32-bit MULT/ACCU result register TABLE 33: (MACRES3) MULT/ACCU UNIT RESULT, HIGH BYTE - SFR F7H 7 6 5 4 3 2 1 0 MACRES3 [31:24] Bit Mnemonic Function Bit Mnemonic Function 31:24 MACRES3 Upper segment of the 32-bit	Bit	Mnem	onic	Fun	ction				
TABLE 31: (MACRES1) MULT/ACCU UNIT RESULT, BYTE 1 - SFR F5H 7 6 5 4 3 2 1 0 MACRES1 [15:8] Bit Mnemonic Function 15:8 MACRES1 Lower middle segment of the 32-bit MULT/ACCU result register TABLE 32: (MACRES2) MULT/ACCU UNIT RESULT, BYTE 2 - SFR F6H 7 6 5 4 3 2 1 0 MACRES2 MULT/ACCU UNIT RESULT, BYTE 2 - SFR F6H 7 6 5 4 3 2 1 0 MACRES2 [23:16] Bit Mnemonic Function QUPPEr middle segment of the 32-bit MULT/ACCU result register TABLE 33: (MACRES3) MULT/ACCU UNIT RESULT, HIGH BYTE - SFR F7H 7 6 5 4 3 2 1 0 MACRES3 [31:24]	7:0	MACR	ES0	Low	er segme	ent of the	32-bit		
7 6 5 4 3 2 1 0 MACRES1 [15:8] Bit Mnemonic Function 15:8 MACRES1 Lower middle segment of the 32-bit MULT/ACCU result register TABLE 32: (MACRES2) MULT/ACCU UNIT RESULT, BYTE 2 - SFR F6H 7 6 5 4 3 2 1 0 MACRES2 (23:16] MACRES2 [23:16] MACRES2 Upper middle segment of the 32-bit MULT/ACCU result register TABLE 33: (MACRES3) MULT/ACCU UNIT RESULT, HIGH BYTE - SFR F7H 7 6 5 4 3 2 1 0 MACRES2 [23:16] Bit MACRES3 MULT/ACCU UNIT RESULT, HIGH BYTE - SFR F7H 7 6 5 4 3 2 1 0 MACRES3 [31:24] Bit Mnemonic Function 31:24 MACRES3 Upper segment of the 32-bit				MUI	_T/ACCU	l result re	egister		
7 6 5 4 3 2 1 0 MACRES1 [15:8] Bit Mnemonic Function 15:8 MACRES1 Lower middle segment of the 32-bit MULT/ACCU result register TABLE 32: (MACRES2) MULT/ACCU UNIT RESULT, BYTE 2 - SFR F6H 7 6 5 4 3 2 1 0 MACRES2 (23:16] MACRES2 [23:16] MACRES2 Upper middle segment of the 32-bit MULT/ACCU result register TABLE 33: (MACRES3) MULT/ACCU UNIT RESULT, HIGH BYTE - SFR F7H 7 6 5 4 3 2 1 0 MACRES2 [23:16] Bit MACRES3 MULT/ACCU UNIT RESULT, HIGH BYTE - SFR F7H 7 6 5 4 3 2 1 0 MACRES3 [31:24] Bit Mnemonic Function 31:24 MACRES3 Upper segment of the 32-bit	TABLE 31.	(MACRES	S1) MULT/A		TRESULT	BYTE 1 - S	ER E5H		
Bit Mnemonic Function 15:8 MACRES1 Lower middle segment of the 32-bit MULT/ACCU result register TABLE 32: (MACRES2) MULT/ACCU UNIT RESULT, BYTE 2 - SFR F6H 7 6 5 4 3 2 1 0 MACRES2 [23:16] MACRES2 [23:16] MACRES2 [23:16] 0 MACRES2 Upper middle segment of the 32-bit MULT/ACCU result register Bit Mnemonic Function 1 0 TABLE 33: (MACRES3) MULT/ACCU UNIT RESULT, HIGH BYTE - SFR F7H 7 6 5 4 3 2 1 0 MACRES3 [31:24] MACRES3 [31:24] 1 0 0 0 0 Bit Mnemonic Function 31:24 MACRES3 Upper segment of the 32-bit								0	
15:8 MACRES1 Lower middle segment of the 32-bit MULT/ACCU result register TABLE 32: (MACRES2) MULT/ACCU UNIT RESULT, BYTE 2 - SFR F6H 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 MACRES2 [23:16] Bit Mnemonic Function 23:16 MACRES2 Upper middle segment of the 32-bit MULT/ACCU UNIT RESULT, HIGH BYTE - SFR F7H 7 6 5 4 3 2 1 0 MACRES3) MULT/ACCU UNIT RESULT, HIGH BYTE - SFR F7H 7 6 5 4 3 2 1 0 MACRES3 [31:24] Bit Mnemonic Function 31:24 MACRES3 Upper segment of the 32-bit				MACRE	S1 [15:8]				
15:8 MACRES1 Lower middle segment of the 32-bit MULT/ACCU result register TABLE 32: (MACRES2) MULT/ACCU UNIT RESULT, BYTE 2 - SFR F6H 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 MACRES2 [23:16] Bit Mnemonic Function 23:16 MACRES2 Upper middle segment of the 32-bit MULT/ACCU UNIT RESULT, HIGH BYTE - SFR F7H 7 6 5 4 3 2 1 0 MACRES3) MULT/ACCU UNIT RESULT, HIGH BYTE - SFR F7H 7 6 5 4 3 2 1 0 MACRES3 [31:24] Bit Mnemonic Function 31:24 MACRES3 Upper segment of the 32-bit									
MULT/ACCU result register TABLE 32: (MACRES2) MULT/ACCU UNIT RESULT, BYTE 2 - SFR F6H 7 6 5 4 3 2 1 0 MACRES2 [23:16] MACRES2 [23:16] MACRES2 [23:16] Image: Comparison of the segment of	Bit	Mnem	onic	Fun	ction				
TABLE 32: (MACRES2) MULT/ACCU UNIT RESULT, BYTE 2 - SFR F6H 7 6 5 4 3 2 1 0 MACRES2 [23:16] Bit Mnemonic Function 23:16 MACRES2 Upper middle segment of the 32-bit MULT/ACCU UNIT RESULT, HIGH BYTE - SFR F7H 7 6 5 4 3 2 1 0 MACRES3) MULT/ACCU UNIT RESULT, HIGH BYTE - SFR F7H 7 6 5 4 3 2 1 0 MACRES3 [31:24] Bit Mnemonic Function 31:24 MACRES3 Upper segment of the 32-bit	15:8	MACR	ES1					32-bit	
7 6 5 4 3 2 1 0 MACRES2 [23:16] MACRES2 [23:16] MACRES2 [23:16] MACRES2 [23:16] MACRES2 Upper middle segment of the 32-bit MULT/ACCU result register TABLE 33: (MACRES3) MULT/ACCU UNIT RESULT, HIGH BYTE - SFR F7H 7 6 5 4 3 2 1 0 MACRES3 [31:24] MACRES3 [31:24] MACRES3 1:24 MACRES3 Upper segment of the 32-bit				MUI	_T/ACCU	l result re	egister		
7 6 5 4 3 2 1 0 MACRES2 [23:16] MACRES2 [23:16] MACRES2 [23:16] MACRES2 [23:16] MACRES2 Upper middle segment of the 32-bit MULT/ACCU result register TABLE 33: (MACRES3) MULT/ACCU UNIT RESULT, HIGH BYTE - SFR F7H 7 6 5 4 3 2 1 0 MACRES3 [31:24] MACRES3 [31:24] MACRES3 1:24 MACRES3 Upper segment of the 32-bit	TADLE 22.			COLUM					
Bit Mnemonic Function 23:16 MACRES2 Upper middle segment of the 32-bit MULT/ACCU UNIT RESULT, HIGH BYTE - SFR F7H 7 6 5 4 3 2 1 0 MACRES3 MULT/ACCU UNIT RESULT, HIGH BYTE - SFR F7H 7 6 5 4 3 2 1 0 MACRES3 [31:24] Bit Mnemonic Function 31:24 MACRES3 Upper segment of the 32-bit								0	
Bit Mnemonic Function 23:16 MACRES2 Upper middle segment of the 32-bit MULT/ACCU result register TABLE 33: (MACRES3) MULT/ACCU UNIT RESULT, HIGH BYTE - SFR F7H 7 6 5 4 3 2 1 0 MACRES3 [31:24] Bit Mnemonic Function 31:24 MACRES3 Upper segment of the 32-bit	1	0	-		•	1		U	
23:16 MACRES2 Upper middle segment of the 32-bit MULT/ACCU result register TABLE 33: (MACRES3) MULT/ACCU UNIT RESULT, HIGH BYTE - SFR F7H 7 6 5 4 3 2 1 0 MACRES3 [31:24] MACRES3 [31:24] Bit Mnemonic Function 31:24 MACRES3 Upper segment of the 32-bit				WICHTEC	2 [20.10]	1			
23:16 MACRES2 Upper middle segment of the 32-bit MULT/ACCU result register TABLE 33: (MACRES3) MULT/ACCU UNIT RESULT, HIGH BYTE - SFR F7H 7 6 5 4 3 2 1 0 MACRES3 [31:24] MACRES3 [31:24] Bit Mnemonic Function 31:24 MACRES3 Upper segment of the 32-bit	Bit	Mnem	onic	Fun	ction				
MÜLT/ACCU result register TABLE 33: (MACRES3) MULT/ACCU UNIT RESULT, HIGH BYTE - SFR F7H 7 6 5 4 3 2 1 0 MACRES3 [31:24] Bit Mnemonic Function 31:24 MACRES3 Upper segment of the 32-bit	23:16	MACR	ES2	-		e seame	nt of the	32-bit	
7 6 5 4 3 2 1 0 MACRES3 [31:24] MACRES3 [31:24] MACRES3 Image: Constraint of the second		_	-						
7 6 5 4 3 2 1 0 MACRES3 [31:24] MACRES3 [31:24] MACRES3 Image: Constraint of the second							Ŭ.		
MACRES3 [31:24] Bit Mnemonic 31:24 MACRES3 Upper segment of the 32-bit							- SFR F7		
Bit Mnemonic Function 31:24 MACRES3 Upper segment of the 32-bit	7	6	-		-	-	1	0	
31:24 MACRES3 Upper segment of the 32-bit			Ν	ACRES	3 [31:24]				
31:24 MACRES3 Upper segment of the 32-bit									
ere eguna e e e e e e e e e e e e e e e e e e e					Function				
MULT/ACCU result register		-							
		-		Upp	per segm				

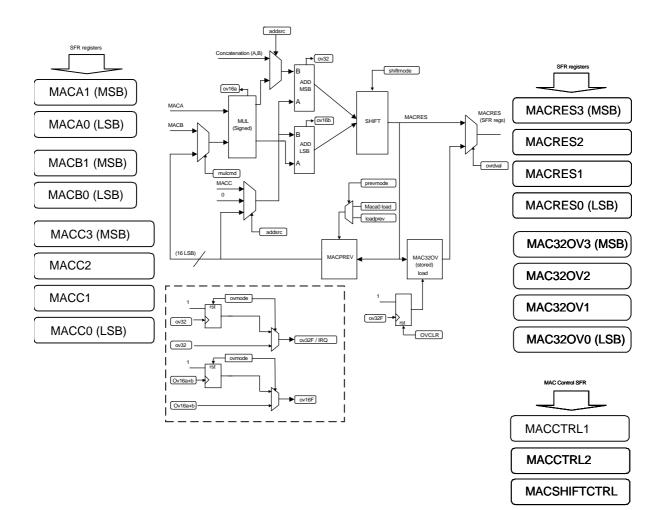
MACPREV Register

The MACPREV register provides the ability to automatically or manually save the contents of the MACRES register and re-inject it into the calculation. This feature is especially useful in applications where the result of a given operation serves as one of the operands of the next one. As mentioned previously, there are two ways to load the MACPREV register controlled by the PREVMODE bit value:

PREVMODE = 0:

Auto MACPREV load, by writing into the MACA0 register. Selected when PREVMODE = 0.

PREVMODE = 1:


Manual load of MACPREV when the LOADPREV bit is set to 1

A good example using the auto loading of the MACPREV feature is the implementation of a FIR Filter. In that specific case, it is possible to save a total of 8 MOV operations per tap calculation.

7	6	5		4	3	2	1	0
			MA	CPR	EV0 [7:0]			
Bit	Mnemo				iction			
7:0	MACPI	REV0			/er segm			
				MU	LT/ACCL	J previou	s result	register
ABLE 35: - SFR FI		V1) MUI	_T/AC	CCU U	NIT PREVIC	OUS OPERA	TION RES	SULT, BYTE
- <u>5FR FL</u> 7	л 6	5	Т	4	3	2	1	0
	Ū	Ŭ	MA		EV1 [7:0]			v
			1010					
Bit	Mnemo	onic		Fun	iction			
45.0				Lower middle segment of 32-bit				
15:8		KEV1		LOW	er midal	e segme	ni oi 32-	DIT
				MU	LT/ACCU	J previou	s result	register
ABLE 36:	(MACPRE		_T/AC	MU		J previou	s result	register
ABLE 36:	(MACPRE	EV2) MUI		MU CCU U 4	LT/ACCU	J previou	ATION RES	register
ABLE 36: - SFR FE	(MACPRE	EV2) MUI		MU CCU U 4	LT/ACCU NIT PREVIC	J previou	ATION RES	register
ABLE 36: - SFR FE	(MACPRE	V2) MUI 5 onic		MU CCU U 4 CPRE Fur	LT/ACCU NIT PREVIC 3 EV2 [15:8	J previou DUS OPERA 2]	ATION RES	register sult, Вүте 0
ABLE 36: - SFR FE 7	(MACPRE EH 6	V2) MUI 5 onic		MU CCU U 4 CPRE Fur Up	LT/ACCU NIT PREVIC 3 EV2 [15:8 notion per middl	J previou DUS OPERA 2] e segme	ATION RES 1 1 ont of 32	register SULT, BYTE 0 -bit
ABLE 36: - SFR FE 7 Bit	(MACPRE	V2) MUI 5 onic		MU CCU U 4 CPRE Fur Up	LT/ACCU NIT PREVIC 3 EV2 [15:8	J previou DUS OPERA 2] e segme	ATION RES 1 1 ont of 32	register SULT, BYTE 0 -bit
ABLE 36: - SFR FE 7 Bit 23:16	(MACPRE EH 6 Mnemo MACP	2V2) MUI 5 0nic REV2	MA	MU CCU U 4 CPRE Fur Up MU	LT/ACCU NIT PREVIC 3 EV2 [15:8 notion per middl	J previou DUS OPERA 2] e segme J previou	ation Res 1 nt of 32- us result	register SULT, BYTE 0 -bit register
ABLE 36: - SFR FE 7 Bit 23:16	(MACPRE EH 6 Mnemo MACP	2V2) MUI 5 0nic REV2		MU CCU U 4 CPRE Up MU CCU U	LT/ACCU NIT PREVICE 3 EV2 [15:8 nection Deer middl ILT/ACCU NIT PREVICE 3	J previou J previou 2 3 e segme J previou J previou D S OPER/ 2	ation Res 1 nt of 32- us result	register SULT, BYTE 0 -bit register
ABLE 36: - SFR FE 7 Bit 23:16 ABLE 37: SYTE - SF	(MACPRE H 6 Mneme MACP (MACPRE R FFH	V2) MUI 5 onic REV2		MU CCU U 4 CPRE Up MU CCU U	LT/ACCU NIT PREVIC 3 EV2 [15:8 notion per middl ILT/ACCU NIT PREVIC	J previou J previou 2 3 e segme J previou J previou D S OPER/ 2	IS RESULT	register SULT, BYTE 0 -bit register SULT, HIGH
ABLE 36: - SFR FE 7 Bit 23:16 ABLE 37: SYTE - SF	(MACPRE H 6 Mneme MACP (MACPRE R FFH	2V2) MUI 5 0nic REV2 2V3) MUI 5		MU CCU U 4 CPRE Up MU CCU U 4 CCPR	LT/ACCU NIT PREVICE 3 EV2 [15:8 nection Deer middl ILT/ACCU NIT PREVICE 3	J previou J previou 2 3 e segme J previou J previou D S OPER/ 2	IS RESULT	register SULT, BYTE 0 -bit register SULT, HIGH
ABLE 36: - SFR FE 7 Bit 23:16 CABLE 37: SYTE - SFI 7	(MACPRE EH 6 Mnem MACP (MACPRE R FFH 6	:V2) MUI 5 0nic REV2 :V3) MUI 5 0nic		MU CPRE CPRE Up MU CCU U 4 CCPR	LT/ACCU NIT PREVIC 3 EV2 [15:8 Detroin Der middl LT/ACCU NIT PREVIC 3 EV3 [7:0]	J previou J previou 2] e segme J previou Dus OPERA 2	INTION RESIDENTIAL ATTION RESIDENT OF 32- UNTION RESIDENTIAL ATTION RESIDENT	register SULT, BYTE 0 -bit register SULT, HIGH

RAMTRON

FIGURE 14: VMX51C1020 MULT/ACCU FUNCTIONAL DIAGRAM

The above block diagram shows the interaction between the registers and the other components that comprise the MULT/ACCU unit on the VMX51C1020.

RAMTRS

MULT/ACCU Barrel Shifter

The MULT/ACCU includes a 32-bit Barrel Shifter at the output of the 32-bit addition unit. The Barrel Shifter can perform right/left shift operations in one cycle, which is useful for scaling the output result of the MULT/ACCU.

The shift range is adjustable from 0 to 16 in both directions. The "shifted" addition unit output can be routed to the:

- o MACRES
- o MACPREV
- o MACOV32

The barrel shifter can perform both arithmetic and logical shifts: The shift left operation can be configured as an arithmetic or logical shift. In the later, the sign bit is discarded.

TABLE 38: (MACSHIFTCTRL) MULT/ACCU UNIT BARREL SHIFTER CONTROL

REGISTER									
7	7	6		5	4	3	2	1	0
SHIFT	MODE	ALSHSTYI	LE		SH	IIFTAN	MPL [5	:0]	
Bit	Mnem	onic	Fu	Inction					
7	SHIFT	MODE	0 =	= Logi	cal S⊦	IIFT			
			1 :	= Arith	metic	SHIFT	Г		
6	ALSHS	STYLE	Ar	ithmet	ic Shi	t Left	Style		
			0=	Arithr	netic I	Left Shift: Logical Left			
			1=	Arithr	netic l	_eft Sł	hift: Ke	ep sig	n bit
5:0	SHIFT	AMPL[5:0]	Sł	ift Am	plitude	e 0 to	16 (5 b	oits to	
			pr	ovide '	16 bits	s shift	range)		
			Ne	g. Nu	mber	= Shift	Right		
						(2 cc	mpler	nents)	
			Po	s. Nu	mber =	= Shift	Left		

MULT/ACCU Unit Setup and OV32 Interrupt Example

In order to use the MULT/ACCU unit, the user must first set up and configure the module. The following provides setup code examples. The first part of the code is the interrupt setup and module configuration, whereas the second part is the interrupt function itself.

Sample C code for MULT/ACCU Unit interrupt setup and module configuration:

//-----------/// Sample C code to setup the MULT/ACCU unit //---- Program initialisation omitted... (...) void main(void){ // MULT/ACCU setup IEN0 |= 0x80; // Enable all interrupts IEN1 |= 0x10; // Enable MULT/ACCU interrupt DIGPWREN |= 0x20; // Enable MULT/ACCU unit MACCTRL1 = 0x0C; // {A,B}+C MACCTRL2 = 0x10; // Enable INT overflow_32 // MULT/ACCU example use

MACA0 = 0xFF;
MACA1 = 0x7F;
MACB0 = 0xFF;
MACB1 = 0xFF;
MACC0 = 0xFF;
MACC1 = 0xFF;
MACC2 = 0xFF;
MACC3 = 0x7F

//--- as soon as the MAC input registers are loaded the result is available in the MACRESx registers.

}//end of main

//____

// MAC 32 bit overflow Interrupt Function

void int_5_mac (void) interrupt 12

{ IEN0 &= 0x7F:

//Put MAC 32 bit Overflow Interrupt code here.*/

//Note that when a 32bit overflow occurs, the 32 least significant bit of the current //result are stored into the MAC320Vx registers and can be read at the location of MACRESx by setting to 1 the OVRDVAL bit of the MACCTRL register

// Disable all interrupts

IRCON &= 0xEF; // Clear flag (IEX5) IEN0 |= 0x80; // Enable all interrupts }

MULT/ACCU Application Example: FIR Filter Function

The following ASM code shows the implementation of a FIR filter computation function for one iteration, the data shifting operation and the definition of the FIR filter coefficient table. The FIR computation is simple to implement, however, it is quite demanding in terms of processing power. For each new data point, the multiplication with associated coefficients + addition operation must be performed N times (N=number of filter tapps).

Due to being hardware based and including features such as automatic reload of the result of the previous operation, the VMX51C1020 MULT/ACCU unit is very efficient for performing operations such as FIR filter computation.

In the code example below, the COMPUTEFIR loop forms the heart of the FIR computation and it is clear that use of the MULT/ACCU unit implies very few instructions being required for mathematical operations. The net result is a dramatic performance improvement when compared with manual calculations done solely via the standard 8051 instruction set.

Ramtru

VMX51C1020 FIR Filter Example

The example below shows how to use the MULT/ACCU unit of the VMX51C1020 to perform FIR filter computing. In order to minimize the example size, only the FIR computing function and the coefficient table are presented.

		R0.#NPOIN	// ITSBASEADR	s
			100/102/101	;INPUT ADC RAW DATA ;AT Xn LOCATIONS
Saving acc	uired data fro	om calling fund	tion into RAM	for computation
	MOV	VARH,DAT		
	MOV MOV	VARL,DAT @R0,VARI		;(MSB)
	INC	R0		
	MOV	@R0,VARI	Ľ	;(LSB)
		f input values	ITSBASEADR	<i>۹</i>
				0
Define E		of coefficients R1,#COEF		
	MOV			INE COUNTER
***Configu	re the MULT/	ACCU unit as	Follow:	
	MOV	MACCTRL	#00001000B	
		OPREV = 0		Previous result
	;BIT6 PRE'	VMODE = 0		revious result save when JA0 is loaded
	BIT5 OVM	ODE = 0		g remains ON until overflow
	BIT4 OVR	DVAL = 0	The value of	f MACRES is the calculation
	, ;BIT3:2 AD	DSRC = 10	result MACPREV i	is the Addition Source
	;BIT1:0 MU	ILCMD = 00	Mul Operatio	on = MACAxMACB
**Clear the	MULT/ACCU	J registers cor	itent	
** COMPU	MOV TE Vn		MACCTRL2	,#0A0H
			Dut a siyas	Coofficient into
JOMPUTE			;MULT/ACC	Coefficient into UB
	INC MOV	R1 MACB0,@I	R1	
	INC	R1		
	MOV		R0 ; Put a giv	en Xn Input into
	INC MOV	R0 MACA0,@	R0	
	;This last in			V register for next Operation
	DJNZ		ITEFIR ;Do th	e Computation for N taps
*** Second				
				CE FOR NEXT ONE
; SHIFTPAS ⁻	 Г:			//
	MOV	R7,#(NPOI	NTS-1)*2	;Define # of datashift ;To perform (N-1)*2
;***COMPU	TE FIRST FE MOV	TCH ADDRE R0,#(NPOI	SS NTSBASEADF	RS - 1 + 2*(NPOINTS-1))
***COMPU		ESTINATION		. "
	MOV	R1,#(NPOI	NTSBASEADF	RS + 1 + 2*(NPOINTS-1))
SHIFTLOO	P: MOV MOV	A,@R0 @R1,A	;Shift Given ;To next loca	
	DEC	R0		inter for moving LSB
	DEC DJNZ	R1 R7,SHIFTL	OOP	
;** PERFOR	RM TRANSFO	ORMATION O	F Yn HERE Al	ND PUT INTO BINH, BINL
** IN THIS ** SO THE			S HAVE BEEN	N MULTIPLIED BY 65536

;** SO THE RESULT IS ON 32-BITS ;** DIVISING YN BY 65536 MEAN ONLY TAKING THE UPPER 16-BITS

MOV	DATAH,MACRES3
MOV	DATAL,MACRES2
LCALL MOV RET	SENDLTC1452 P3,#00

;* FIR Filter Coefficients Table

;------; ;FSAMPLE 480HZ, N=16, LOW PASS 0.1HZ -78DB @ 60HZ

*

COEFTABLE:	DW 023	DH
DW	049DH	
DW	086AH	
DW	0D2DH	
DW	1263H	
DW	1752H	
DW	1B30H	
DW	1D51H	
DW	1D51H	
DW	1B30H	
DW	1752H	
DW	1263H	
DW	0D2DH	
DW	086AH	
DW	049DH	
DW	023DH	
DW	0FFFFH	;END OF TABLE

VMX51C1020 Timers

The VMX51C1020 includes 3 general-purpose timer/counters

- o Timer0
- o Timer1
- o Timer2

Timer0 and Timer1 are general purpose timers that can operate as a timer with a clock rate based on the system clock, or as an event counter that monitosr events occurring on an external timer input pin (TOIN for Timer 0 and T1IN for Timer 1).

Timers 0 and Timer 1 are similar to the standard 8051 timers.

Apart from also being capabile of operating as a timer based on a system clock or as an event counter, Timer2 is also the heart of the PWM counter outputs and the Compare and Capture Units.

Each of the VMX51C1020's timers has a dedicated interrupt vector which can be triggered when the Timers overflow.

Timer 0 and Timer 1

The VMX51C1020's Timer0 and Timer1 are very similar in their structure and operation. The main difference being that Timer1 serves as a baud rate generator for UART0 and it shares some of its resources when Timer0 is used in mode 3.

Timer0 and Timer1 each consist of a 16-bit register for which the content is accessible as two independent SFR registers: TLx and THx.

TABLE 39: (TL0) TIMER 0 LOW BYTE - SFR 8AH									
7	6	5	4	3	2	1	0		
			TL0	[7:0]					
TABLE 40:	(TH0) TIM	ER 0 HIGH	BYTE - SFI	R 8CH					
7	6	5	4	3	2	1	0		
			TH0	[7:0]					
TABLE 41:	(TL1) TIME	ER 1 LOW E	BYTE - SFF	R 8BH					
7	6	5	4	3	2	1	0		
			TL1	[7:0]					
TABLE 42:	TABLE 42: (TH1) TIMER 1 HIGH BYTE - SFR 8DH								
7	6	5	4	3	2	1	0		
			TH1	[7:0]					

With the exception of their associated interrupts, the configuration and control of Timer0 and Timer1 is performed via the TMOD and TCON SFR registers.

The following table shows the TCON special function register of the VMX51C1020. This register contains the Timer 0/1 overflow flags, Timer 0/1 run control bits, interrupt 0/1 edge flags, and the interrupt 0/1 interrupt type control bits.

TABLE 43: (TCON) TIMER 0, TIMER 1 TIMER/COUNTER CONTROL - SFR 88H								
7	6	5	4					
TF1	TR1	TF0	TR0					

3	2	1	0
IE1	IT1	IE0	IT0

Bit	Mnemonic	Function
7	TF1	Timer 1 overflow flag.
		Set by hardware when Timer 1 overflows.
		It is automatically cleared when the
		Timer 1 interrupt is serviced.
		This flag can also be cleared by software.
6	TR1	Timer 1 Run control bit.
		TR1 = 0, Stop Timer 1
		TR1 = 1, Start Timer 1
5	TF0	Timer 0 overflow flag.
		Set by hardware when Timer 0 overflows.
		It is automatically cleared when the
		Timer 0 interrupt is serviced.
		This flag can also be cleared by software.
4	TR0	Timer 0 Run control bit.
		TR0 = 0, Stop Timer 0
-	154	TR0 = 1, Start Timer 0
3	IE1	Interrupt 1 edge flag.
		This flag is set by hardware when falling
		edge on external INT1 is observed.
2	IT1	It is cleared when interrupt is processed.
2	111	INT1 interrupt event type control bit. IT1 = 0, interrupt will be caused by
		a Low Level on INT1
		IT1 = 1, Interrupt will be caused by a
		High to Low transition on INT1.
1	IE0	INTO edge flag configuration
1		Set by hardware when falling edge on
		external pin INT0 is observed.
		It is cleared when interrupt is processed.
0	IT0	INT0 interrupt event type control bit.
-	-	IT0 = 0, interrupt will be caused by
		a Low Level on INT0
		IT0 = 1, Interrupt will be caused by a
		High to Low transition on INT0.

KAMTR'

The TMOD register is mainly used to set the operating mode of the timers and it allows the user to enable the external gate control as well as select timer or counter operation.

TABLE 44	(TMOD) T	IMER MODE	CONTROL -		
	7 6				4
GA	GATE1 C1			M11	M01
	3 2			1	0
	3 2 GATE0 C			M10	M00
- OF	ILU	010		WITO	WIOO
Bit	Mnemo	onic I	unction		
7	GATE1		GATE1 =		
				present on the on Timer1 oper	
		- - - -	GATE1 = 1, The level of INT1 pin serves as a Gate control on to Timer/Counter operation provided the TR1 bit is set. Applying a Low Level on the INT1 pin makes the Timer stop.		
	CT1		Selects T CT1 = 0,		er 1 as a Timer is incremented
			CT1 = 1,	The Timer 1 counter whic High to Low that occurs o input.	transition on
5	M11		Selects mode for Timer/Counter 1, as		
4	M01		shown in the Table below.		
3	GATEC) (GATE0 =	0,	
				present on th on Timer1 oper	e INT0 pin has ation.
		- () 	control or provided	of INT0 pin sent to Timer/Co the TR0 bit is sell on the INT0	erves as a Gate unter operation set. Applying a pin makes the
2	СТО		Selects Ti CT1 = 0,		er 0 as a Timer is incremented
		(CT1 = 1,	counter whic High to Low that occurs o	transition on
				input.	
1	M10 M00			input. ode for Timer/ the Table belov	

Timer0/Timer1/Counter Operation

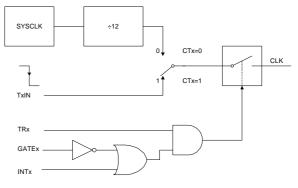
The CT0 and CT1 bits of the TMOD register control the Clock source for Timer0 and Timer1, respectively. When the CT bit is set to 0 (Timer mode) the Timer is sourced from the system clock divided by 12.

Setting the CTx bit to 1 sets the Timer to operate in event counter mode. In this mode, High to

Low transitions on the TxIN pin of the VMX51C1020 increments the timer value.

Note that when Timer0 and Timer1 operate in Timer mode, they use the System Clock as their source. Therefore configuring the CLKDIVCTRL register will affect the Timer's operation.

Timer0 & Timer1 Gate Control


The Gate control makes it possible for an external device to control Timer0 and Timer1 operation through the interrupt (INTx) pins.

When the GATEx and TRx bits of the TMOD register are set to 1:

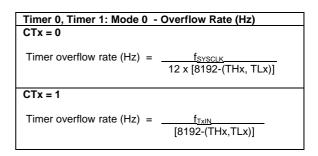
- INTx = Logic LOW, The Timer x Stops
- INTx = Logic High, The Timer x Runs

When the Gate bit equals 0, then the logic level present at the INTx pin have no effect on the Timer Operation.

FIGURE 15: TIMER 0, TIMER 1 CTX & GATE CONTROL

Timer0, Timer1 Operation Modes

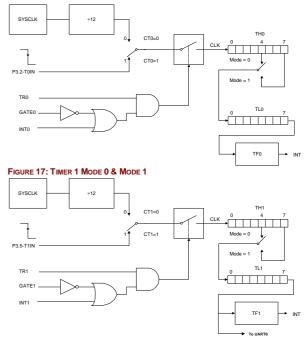
The operating mode of Timer0 and Timer1 is determined by the M1x and M0x bits in the TMOD register. The following summarizes the four modes of operation for Timers0 and 1.

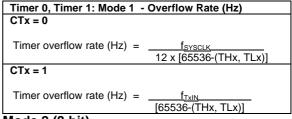

M1	MO	Mode	Function
0	0	Mode 0	13-bit Timer / Counter , with 5 lower bits in TL0 or TL1 register and bits in TH0 or TH1 register (for timer 0 and timer 1, respectively). The 3 high order bits of TL0 and TL1 are held at 0.
0	1	Mode 1	16-bit Timer / Counter
1	0	Mode 2	8-bit auto reload Timer / Counter. The reload value is kept in TH0 or TH1, while TL0 or TL1 is incremented every machine cycle. When TLx overflows, a value from THx is copied to TLx.
1	1	Mode 3	If Timer 1 M1 and M0 bits are set to 1, Timer 1 stops. If Timer 0 M1 and M0 bits are set to 1, Timer 0 acts as two independent 8-bit Timers / Counters.

Mode 0, 13-bit Timer/Counter

Mode 0 operation is the same for Timer0 and Timer1.

In Mode 0, the timer is configured as a 13-bit counter that uses bits 0-4 of the TLx register and all 8-bits of the THx register. The Timer Run bit (TRx) of the TCON SFR starts the timer. The value of the CTx bit defines if the Timer will operate as a Timer (CTx = 0), deriving its source from the System Clock, or count the High to Low Transitions (CTx = 1) that occurs on the External Timer input pin (TxIN). When the 13-bit count increments from 1FFFh (all ones) to all zeros, the TF0 (or TF1) bit will be set in the TCON SFR.


The state of the upper 3-bits of the TLx register is indeterminate in Mode 0 and must be masked when the software evaluates the register's contents.

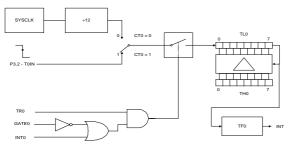

Mode 1 (16-bit)

Mode 1 operation is the same for Timer0 and Timer1. In Mode 1, the timer is configured as a 16-bit counter. Other than rollover at FFFFh, Mode 1 operation is the same as Mode 0.

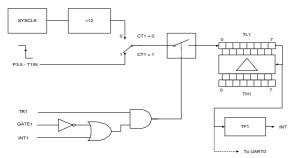
FIGURE 16 : TIMER 0 MODE 0 & MODE 1

The Timer0 and Timer1 overflow rate in mode 1 can be calculated using the following equations:

Mode 2 (8-bit)


The operation of Mode2 is the same for Timer0 and Timer1. In Mode 2, the timer is configured

Kantre


as an 8-bit counter, with automatic reload of the start value. The LSB of the Timer register, TLx, is the counter itself and the MSB portion of the Timer, THx, stores the timer reload value.

Mode 2's counter control is the same as for Mode 0 and Mode 1. However, in Mode 2, when TLx rolls over from FFh, the value stored in THx is reloaded into TLx.

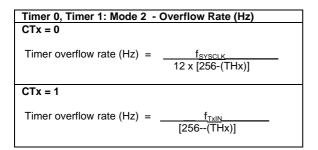
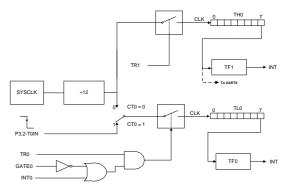
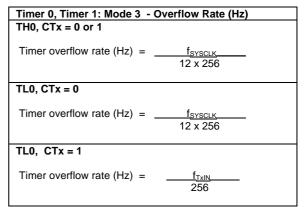

FIGURE 18 : TIMER 0 MODE 2

FIGURE 19: TIMER 1 MODE 2

The Timer0 and Timer1 overflow rate in Mode 2 can be calculated using the following equations:


Using Timer1 as Baud Rate generator

Using Timer1 in mode 2 is recommended as the best approach when using Timer1 as the UART0 baud rate generator.


Mode 3 (2 x 8-bit)

In Mode 3, Timer0 operates as two 8-bit counters and Timer1 stops counting and holds its value.

The Timer0 overflow rate in Mode 3 can be calculated by using following equations:

In Mode 3, the values present in the TH1 and TL1 registers, as well as the value of the GATE1 and CT1 control bits, have no impact on the Timer operation.

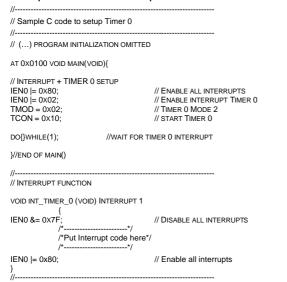
Timer0 & Timer1 Interrupts

Timer0 and Timer1 have a dedicated interrupt vectors located at:

- o 000Bh for the Timer 0
- o 001Bh for the Timer 1

The natural priority of Timer0 is higher than that of Timer1.

<u>Ramtron</u>


The following table provides a summary of the Interrupt control and Flag bits associated with the Timer0 and Timer1 interrupts.

Bit Name	Location	Description
EA	IEN0.7	General interrupt control bit 0, Interrupt Disabled 1, Enabled Interrupt active
TOIE	IEN0.1	Timer 0 Overflow Interrupt 1 = Enable 0 = Disable
T1IE	IEN0.3	Timer 1 Overflow Interrupt 1 = Enable 0 = Disable
TFO	TCON.5	TF0 Flag is set when Timer 0 Overflow occurs. Automatically cleared when Timer 0 interrupt is serviced. This flag can also be cleared by software
TF1	TCON.7	TF1 Flag is set when Timer 1 Overflow occurs. Automatically cleared when Timer 1 interrupt is serviced. This flag can also be cleared by software

Setting Up Timer0 Example

In order to use Timer0, the first step is to setup the interrupt and then configure the module and this is described in the following code example.

Sample C code to set up Timer 0:

Setting Up Timer1 Example

The following code provides an example of how to configure Timer1 (first part of the code is the interrupt setup and module configuration whereas the second part is the interrupt function).

Example1: Delay function

//	
	code using the Timer 1: Delay function
	MS(UNSIGNED CHAR DLAIS) { IDATA UNSIGNED CHAR X=0; TMOD = 0x10; TL1 = 0x33; TH1 = 0xFB; ;//TIMERT RELOAD VALUE FOR TCON = 0x40;
DO{ x=TCON; x= x&0x80 }WHILE(x==	
	TCON = TCON&0x7F; TL1 = 0x33; TH1 = 0xFB; ;//TIMER1 RELOAD VALUE FOR
}//END OF DEL	DLAIS = DLAIS-1; } AY 1MS

Example 2: Timer1 interrupt example

// TIMER 1 setup

```
IEN0 |= 0x80;
                                                // Enable all interrupts
IEN0 = 0x08;
TMOD = 0x20;
                                                // Enable interrupt Timer1
// Timer 1 mode 2
TCON = 0x40;
TL1 = 0xFC;
                                                // Start Timer 1
// Timer1 offset
do {
               }while(1):
                                                //Wait Timer 1 interrupt
}//end of main() function
// Timer 1 Interrupt function
void int_timer_1 (void) interrupt 3
IEN0 &= 0x7F;
                                                // Disable all interrupts
/* Put Interrupt code here*/
IEN0 |= 0x80;
                                                // Enable all interrupts
```


٦

4

Timer2

The VMX51C1020 Timer2 and associated peripherals include the following capabilities:

- o 16-Bit Timer
- o 16-Bit Auto-Reload Timer
- o Compare and Capture units
- 8 / 16 PWM outputs

TABLE 46	TABLE 46: (TL2) TIMER 2, LOW BYTE - SFR CCH						
7	6	5	4	3	2	1	0
	TL2 [7:0]						
TABLE 47	TABLE 47: (TH2) TIMER 2, HIGH BYTE - SFR CDH						
7	6	5	4	3	2	1	0
TH2 [7:0]							

Figure 21 shows the Timer2 Compare/Capture unit block diagram. The following paragraphs will describe describe how these blocks work.

Timer2 Registers

Timer2 constists of a 16-bit register, whose upper and lower bytes are accessible via two independent SFR registers (TL2, TH2).

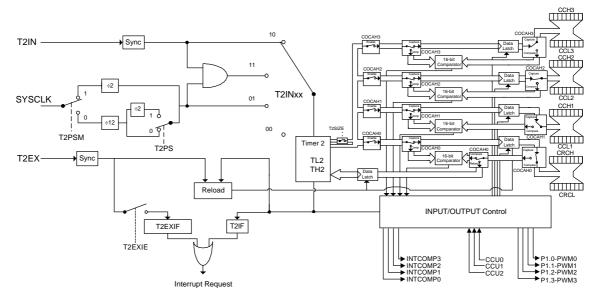
TABLE 48:	TABLE 48: (TL2) TIMER 2 LOW BYTE - SFR CCH						
7	6	5	4	3	2	1	0
	TL2 [7:0]						
TABLE 49:	TABLE 49: (TH2) TIMER 2 HIGH BYTE - SFR CDH						
7	6	5	4	3	2	1	0
TH2 [7:0]							

Timer2 Control Register

Most of Timer2's control is accomplished via the T2CON register located at SFR address C8h.

The T2CON register controls:

- o T2 clock source Prescaler
- T2 count size (8/16-bits)
- o T2 reload mode
- o T2 Input selection


 TABLE 50: (T2CON) TIMER 2 CONTROL REGISTER
 -SFR C8H

 7
 6
 5

0			
0			
0			
0			
of			
of			
1 = 8-bit			
Timer 2 reload mode selection 0X = Reload disabled			
10 = Mode 0 11 = Mode 1			
24			
- ·			

<u>Ramtron</u>

FIGURE 21: TIMER 2 AND COMPARE/CAPTURE UNIT

Timer2 Clock Sources

As previously stated, Timer2 can operate in Timer mode, in which case it derives its source from the System Clock (SYSCLK) or it can be configured as an event counter where the High to Low transition on the T2IN input makes the Timer 2 to increment.

The T2IN0 and T2IN1 bits of the T2CON register serve to define the selected Timer2 input and the operating mode of Timer2 (see following table).

TIMER 2 CLOCK SOURCE

T2IN1	T2IN0	Selected Timer 2 input	
0	0	Timer 2 Stop	
0	1	Standard Timer mode using internal clock with or without prescaler	
1	0	External T2IN pin clock Timer2	
1	1	Internal Clock is gated by the T2IN input When T2IN = 0, the Timer2 stop	

When in Timer mode, Timer2 derives its source from the System Clock and the CLKDIVCTRL register will affect Timer 2's operation.

Timer 2 Stop

When both T2IN1 and T2IN0 bit are set to 0, Timer2 is in STOP mode.

Timer2 Operating Modes

When the T2IN1 bit is set to 0 and the T2IN0 bit is set to 1, Timer2 derives its source from the internal pre-scaled clock or not, depending on the T2PSM bit value.

Event Counter Mode

When operating in the Event Counter Mode, the timer is incremented as soon as the external signal T2IN transitions from a 1 to a 0. A sample of the T2IN input is taken at every machine cycle. Timer 2 is incremented in the cycle following the one in which the transition was detected.

Gated Timer Mode

In the Gated Timer Mode, the internal clock, which serves as the Timer2 clock source, is gated by the external signal T2IN. In other words, when T2IN is high, the internal clock is allowed to pass through the AND gate. A low value of T2IN will diable the clock pulse. This provides the ability for an external device to control Timer2's operation or to use Timer2 to monitor the duration of an event.

RAMTRON

Timer2 Clock Prescaler

When Timer2 is configured so that it derives its clock source from the System Clock, the Clock prescaling value can be controlled by software using the T2PSM and the T2PS bit of the T2CON register.

The different system clock prescaling values are shown in the following table:

T2PSM	T2PS	Timer 2 input clock
1	Х	SYSCLK / 2
0	0	SYSCLK / 12
0	1	SYSCLK / 24

Timer2 Count Size

Timer2 can be configured to operate in 8-bit or 16-bit formats. The T2SIZE bit of the T2CON register selects the Timer2 count size.

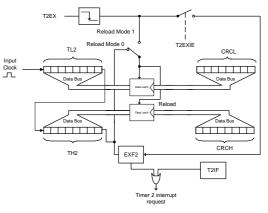
- If T2SIZE = 0, Timer2 size is 16-bits
- If T2SIZE = 1, Timer2 size is 8-bits

Timer2 Reload Modes

The Timer2 reload mode is selected by the T2RM1 and T2RM0 bits of the T2CON register. The following figure shows the reload operation.

Timer2 must be configured as a 16-bit Timer/Counter for the reload modes to be operational by clearing the T2SIZE bit.

Timer 2 Mode 0


When the timer overflows, the T2IF overflow flag is set. Concurrently, this overflow causes Timer2 to be reloaded with the 16-bit value contained in the CRCx register, (which has been preset by software). This reload operation will occur during the same clock cycle in which T2IF was set.

Timer2 Mode 1

In Mode 1, a 16-bit reload from the CRCx register on the falling edge of T2EX occurs. This transition will set T2EXIF if T2EXIE is set. This action will cause an interrupt (providing that the Timer2 interrupt is enabled) and the T2IF flag value will not be affected.

The value of the T2SIZE does not affect the Reload in Mode 1. Also, the reload operation is performed independently of the state of the T2EXIE bit.

FIGURE 22: TIMER 2 RELOAD MODE

Timer2 Overflows and Interrupts

Timer2's interrupt is enabled when the Timer2 counter, the T2IF flag is set, and a Timer 2 interrupt occurs.

A Timer2 interrupt may also be raised from T2EX if the T2EXIE bit of the IEN1 register is set.

Finding the exact source of a Timer2 interrupt can be verified by checking the value of the T2IF and the T2EXIF bits of the IRCON register.

Timer2's interrupt vector is located at address 002Bh

Timer2 Setup Example

In order to use Timer2, one must first set up and configure the module (see following code example).

//	
// Sample C code to setup Timer 2 //	
// () PROGRAM INITIALIZATION OMITTEI	
at 0x100 void main(void){	
// TIMER 2 & Interrupt setup DIGPWREN = 0x80; T2CON = 0x01; TL2 = 0xE0; TH2 = 0xFF;	// Enable Timer2, // Set timer 2 to OSC/12
IEN0 = 0x80; IEN0 = 0x20;	// Enable all interrupts // Enable interrupt Timer 2
do{ }while(1);	//wait for Timer 2 interrupt
}//end of main()	
// // Timer 2 Interrupt Function //	
void int_timer_2 (void) interrupt 5 { IEN0 &= 0x7F;	// Disable all interrupts
/**/ /*Interrupt code here*/ /**/	
IEN0 = 0x80; }	// Enable all interrupts

Timer2 Special Modes

For general timing/counting operations, the VMX51C1020's Timer2 includes 4 Compare and Capture units that can be used to monitor specific events and serve to drive PWM outputs. Each Compare and Capture unit provides three specific operating modes that are controlled by the CCEN register. These 3 modes are:

- Compare Modes Enable.
- o Capture on write into CRCL/CCLx registers.
- Capture on transitions at CCU input pins level.

TABLE 51: (CCEN) COMPARE/CAPTURE ENABLE REGISTER -SFR C9H

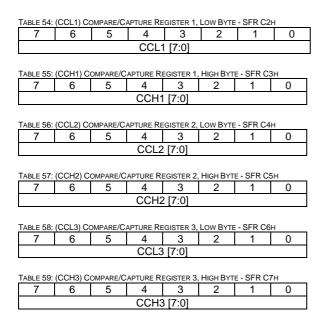
7	6	5	4
COCAH3	COCAL3	COCAH2	COCAL2
3	2	1	0
COCAH1	COCAL1	COCAH0	COCAL0

The CCEN register bits are grouped in pairs of COCAHx/COCALx bits. Each pair corresponds to one Compare and Capture Unit. The Compare and Compare unit operating mode vs. the configuration bit is described in the following table.

Bit				
Mnemonic	Mnemonic	Function		
COCAH0	COCAL0	Compare and Capture mode		
		for CRC register		
0	0	Compare/capture disabled		
0	1	Capture on a <u>falling edge</u> at pin CCU0 (1 cycle)		
1	0	Compare enabled (PWM0)		
1	1	Capture on write operation into register CRC1		
COCAH1	COCAL1	Compare/capture mode for CC register 1		
0	0	Compare/capture disabled		
0	1	Capture on a <u>rising edge</u> at pin CCU1 (2 cycles)		
1	0	Compare enabled (PWM1)		
1	1	Capture on write operation into register CCL1		
COCAH2	COCAL2	Compare/capture mode for CC register 2		
0	0	Compare/Capture disabled		
0	1	Capture on a <u>rising edge</u> at pin CCU2 (2 cycles)		
1	0	Compare enabled (PWM2)		
1	1	Capture on write operation into register CCL2		
COCAH3	COCAL3	Compare/Capture mode for CC register 3		
0	0	Compare/capture disabled		
0	1	N/A - CCU3 not pinned out		
1	0	Compare enabled (PWM)		
1	1	Capture on write operation into register CCL3		

This allows individual configuration and operation of each Compare and Capture Unit.

Compare/Capture & Reload Registers


Each Compare and Capture Unit has a specific 16-bit register accessible via two SFR addresses.

Note that the CRCHx/CRCLx registers associated with Compare/Capture Unit 0 are the only ones that can be used to perform a reload of Timer2 operation.

The following tables describe the different registers that may be captured or compared to the value of Timer2.

TABLE 52: (CRCL) COMPARE/RELOAD/CAPTURE REGISTER, LOW BYTE - SFR CAH							
7	6	5	4	3	2	1	0
CRCL [7:0]							
TABLE 53: (CRCH) COMPARE/RELOAD/CAPTURE REGISTER, HIGH BYTE - SFR CBH							
7 6 5 4 3 2 1 0							
CRCH [7:0]							

Compare/Capture Data Line Width

The VMX51C1020 is capable of comparing and capturing data using data lines up to 16 bits wide. When comparing 2 registers or capturing 1 register, it is required to set the T2SIZE bit of the T2CON register to 1. This adjusts the line width to 8-bits.

When comparing two pairs of registers, for example, CCH1 and CCL1 to TH2 and TL2, the T2SIZE bit must be set to 0. This adjusts the line width to 16 bits.

Timer2 Capture Modes

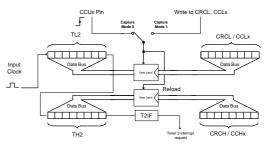
The Timer2 Capture Modes allow acquiring and storing the 16-bit contents of Timer2 into a Capture/Compare register following a MOV SFR operation or the occurrence of an external event on one of the CCU pins (described in the following table).

Capture input	Timer 2 Capture triggering event
CCU0	High to Low Transition on CCU0
CCU1	Low to High Transition on CCU1
CCU2	Low to High Transition on CCU2

Timer2 capture is done without affecting Timer2 operation.

Each individual Compare and Capture Unit can be configured for Capture Mode by configuring the appropriate bit pair of the CCEN register. The two Capture modes are Mode 0 and Mode 1.

Capture Mode 0


In Capture Mode 0, a transition on a given CCU pin triggers the latching of Timer2 data into the associated Compare/Capture register.

Capture Mode 1

In Capture Mode 1, a capture of the Timer2 value will occur upon writing to the Low Byte of the chosen capture register.

Note: On the VMX51C1020, the CCU3 input is NOT pinned out.

FIGURE 23: TIMER 2 CAPTURE MODE 0 FOR CRCL AND CRCH BLOCK DIAGRAM

The Capture modes can be especially useful for external event duration calculation with the ability to latch the timer value at a given time (computation can then be performed at a later time).

When operating in Capture Modes, the Compare and Capture units don't affect the VMX51C1020 Interrupts.

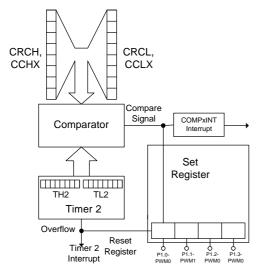
Timer2 Compare Modes

In Compare Mode, a Timer2 count value is compared to a value that is stored in the CCHxx/CCLx or CRCHx/CRCLx registers. If the values compared match (i.e. when the pulse changes state), a Compare/Capture interrupt is generated, if enabled. Varying the value of the CCHx/CCLx or CRCHx/CRCLx allows a variation of the rectangular pulse generated at the output. This variation can be used to perform pulse width modulation. See PWM in the following section.

In order to activate the Compare Mode on one of the four Compare Capture Units, the associated COCAHx and COCALx bits must be set to 1 and 0, respectively

/CMTRL

When the Compare Mode is enabled, the corresponding output pin value is under the control of the internal timer circuitry.


On the VMX51C1020, two Compare Modes are possible. In both modes, the new value arrives at port pin 1 in the same clock cycle as the internal compare signal is activated. The T2CM of the T2CON register defines the Compare Mode and is described in the following paragraphs.

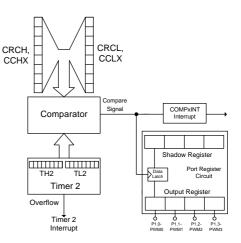
Compare Mode 0

A functional diagram of Compare Mode 0 is shown below. A comparison is made between the 16-bit value of the Compare/Capture registers and the TH2, TL2 registers. When the Timer2 value exceeds the value stored in the CRCH, CRCL / CCHx, CCLx registers, a high generated compare signal is and а Compare/Capture interrupt is activated if enabled. If T2SIZE = 1, the comparison is made between the TL2 and CRCL/CCLx register.

This compare signal is then propagated to the pin corresponding P1.x Pin(s) and to the associated COMPINTx interrupt (if enabled). The corresponding P1.x pin is reset when a Timer2 overflow occurs.

FIGURE 24: TIMER 2 COMPARE MODE 0 BLOCK DIAGRAM

Compare Mode 1

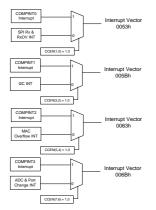

When a given Compare Capture unit is operating in Mode 1, any write operations to the corresponding output register of the port P1.x

(x=0 to3) will not appear on the physical port pin until the next compare match occurs.

As is the case in Compare Mode 0, the Compare signal in Mode 1 can also generate an interrupt (if enabled).

The figure below shows the operating structure of a given Capture Compare unit operating in Compare Mode 1.

FIGURE 25: TIMER 2 COMPARE MODE 1 BLOCK DIAGRAM


Timer 2 Compare Mode Interrupt

Configuration of the Compare and Capture Units for the "Compare Mode" through the CCEN register has an impact on the Interrupt structure of the VMX51C1020. In that specific mode each Compare Capture Unit takes control of one interrupt line.

When using the PWM output device, some care must be excercised to avoid other peripheral interrupts from being blocked by this mechanism.

RAMTRON

FIGURE 26: COMPARE AND CAPTURE UNIT INTERRUPT CONTROL

Using Timer 2 for PWM Outputs

Configuring the Compare and Capture Units in Compare Mode 0 allows PWM output generation on the Port1 I/O pins. This mode can be used for PWM applications such as:

- o D/A conversion
- o Motor control
- o Light control
- o Etc.

When one specific Compare and Capture unit is configured for this mode, its associated I/O pin is reserved for this operation only and any write operation to the associated I/O pin of the P1 register will have no effect on it.

The following table shows the association between the Compare and Capture Units, associated registers and I/O pin

Compare Capture Unit	Registers	I/O pin
0	CRCH / CRCL	P1.0
1	CCH1 / CCL1	P1.1
2	CCH2 / CCL2	P1.2
3	CCH3 / CCL3	P1.3

TABLE 60: COMPARE AND CAPTURE UNIT PWM ASSOCIATION

PWM signal generation is derived from the comparison result between the values stored into the capture compare registers and the Timer2 value.

When a digital value is written into one of the Compare and Capture registers, a comparison is performed between this register and the Timer2 value (providing that Timer2 is in Compare Mode). As long as the value present in the Compare and Capture register is greater than the Timer2 value, the Compare unit will output a logic low.

When the value of Timer2 equals the value of the Compare and Capture register, the Compare unit will change from a logic Low to a logic High.

The clock source for the PWM is derived from Timer2; which is incremented at every signal pulse of the appropriate source. The source is selected by the T2IN1 and T2IN0 bits of the T2CON register

The T2SIZE bit of the T2CON register allows configuring the PWM output for 8 or 16-bit operation. The Timer2 Size affects all the PWM outputs.

When the Timer2 Size is 8-bits, the comparison is performed between Timer2 and the LSB of the Compare and Capture Unit register. The resulting PWM resolution is 8-bit.

When the Timer2 Size is configured for 16-bit operation, the comparison is performed between Timer2 and the contents of the whole Compare and Capture Unit register. The resulting PWM resolution is 16-bits but the PWM frequency is consequently low.

When the System clock is used as the Timer2 clock source, the PWM output frequency equals the Timer2 overflow rate. Note that the CLKDIVCTRL register contents affects Timer2 operation and thus, PWM output frequency.

Fosc	T2CON T2PSM	T2CON T2PS	T2CON T2SIZE	Freq PWM
14.74MHz	1	Х	0	112.5Hz
	1	х	1	28.8KHz
	0	0-12	1-8	4.8KHz
	0	0-12	0-16	18.8Hz
	0	1-24	1-8	2.4KHz
	0	1-24	0-16	9.38Hz

The duty cycle of the PWM output is proportional to the ratio of the Compare and Capture Unit register's content versus the Maximum Timer2 number of cycles before overflow: 256 or 65536, depending on the T2SIZE bit value

PWM duty cycle CCU0 (%) = $100\% x$ (256-CRCL) 256 PWM duty cycle CCU1-3 (%) = $100\% x$ (256-CCLx) 256	PWM Duty Cycle Calculation: 8-bi	it
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	PWM duty cycle CCU0 (%) = 100% x	
	PWM duty cycle CCU1-3 (%) = 100% x	

PWM Duty Cycle Calculation: 16-bit
PWM duty cycle CCU0 (%) = 100% x <u>65536–(CRCH, CRCL)</u> (CRCH, CRCL)
PWM duty cycle CCU1-3 (%) = 100% x <u>65536–(CRCH, CRCL)</u> (CRCH, CRCL)

PWM Configuration Example

The following example shows how to configure the Timer2 based PWM in 8-bit mode.

(...) DIGPWREN = 0x80; T2CON = 0x61;

//ENABLE TIMER 2 MODULE //BIT 7 - Select 0=1/12, 1=1/24 of Fosc //BIT 6 - T2 clk source: 0 = Presc, 1=clk/2 //BIT 5 - T2 size: 0=16-bit, 1=8-bit //BIT 4,3 - T2 Reload mode: //BIT 2 - T2 Compare mode //BIT 1,0 - T2 input select: 01= input derived from osc.

//W hen the PWM is configured in 16-bit format, the PWM output frequency is given by //the following expression: // PWM Freq = [(FOSC/2)] / 65536 // WITH a 14.7456MHz Crystal PWM frequency = 112.5Hz

//When the PWM is configured in 8-bit its output freq = [(Fosc/2)] / 256 //USING A 14.7456MHz CRYSTAL PWM FREQUENCY = 28.8KHz

CCEN = 0x0AA;

//Enable Compare on 4 PWM outputs

// In 16-bit PWM resolution both LSB and MSB of compare unit are used //In 8-bit PWM Resolution, only the LSB of compare units are used // and MSB is kept to 00h

CRCL = 0x0E6;	//PWM0 duty = [(256-CRCL)/256]
x100%	
CRCH = 0x000;	//E6h => 10.1%
CCL1 = 0x0C0;	//PWM1 duty = [(256-CCL1)/256]
x100%	
CCH1 = 0x000;	//C0h => 25%
CCL2 = 0x080;	//PWM2 duty = [(256-CCL2)/256] x100%
CCH2 = 0x000;	//80h => 50%
CCL3 = 0x033;	//PWM3 duty = [(256-CCL3)/256] x100%
CCH3 = 0x000;	//33h => 80%
P1PINCFG = 0x0F;	//Configure P1 LSQ as output to enable
	PWM

(...)

Using the PWM as a D/A Converter

One of the popular uses of the PWM is to perform D/A conversion by low pass filtering its' modulated square wave output. The greater the duty cycle of the square wave, the greater the DC value is at the output of the low pass filter and vice versa.

Variations in the duty cycle of the PWM when filtered can therefore generate arbitrary waveforms.

Serial UART Interfaces

The VMX51C1020 includes two serial UART interface ports (UART0 and UART1). Each serial port has a 10-bit timer devoted to baud rate generation.

Both serial ports can operate in full duplex mode. The VMX51C1020 also includes a double buffer, enabling the UART to accept an incoming word before the software has read the previous value.

UARTO Serial Interface

The operation of UART0 of the VMX51C1020 is similar to the standard 8051 UART.

UARTO can derive its clock source from a 10-bit dedicated baud rate generator or from the Timer1 overflow.

UARTO's Transmit and Receive buffers are accessed through a unique SFR register named S0BUF.

The UARTO SOBUF has a double buffering feature on reception which allows accepting an incoming word before the software has read the previous value from the SOBUF.

TABLE 61: (S0BUF) SERIAL PORT 0, DATA BUFFER - SFR 99H					
7	7 6 5 4 3 2 1 0				
S0BUF [7:0]					

UART0 Control Register

UART0 configuration is performed mostly via the S0CON SFR register located at address 98h.

TABLE 62: (TABLE 62: (S0CON) SERIAL PORT 0, CONTROL REGISTER - SFR 98H				
7		6	5	4	
SON	/10	S0M1	MPCE0	R0EN	
3		2	1	0	
TOE	38	R0B8	TOI	R0I	

Bit	Mnemonic	Function
7	S0M0	Sets Serial Port Operating Mode
6	S0M1	See Table
5	MPCE	1 = Enables the multiprocessor communication feature.
4	R0EN	1 = Enables serial reception. Cleared by software to disable reception.
3	T0B8	The 9 th transmitted data bit in Modes 2 and 3. Set or cleared by the CPU, depending on the function it performs (parity check, multiprocessor communication etc.)
2	R0B8	In Modes 2 and 3, it is the 9 th data bit received. In Mode 1, if sm20 is 0, RB80 is the stop bit. In Mode 0, this bit is not used. Must be cleared by software.
1	ТОІ	Transmit interrupt flag set by hardware after completion of a serial reception. Must be cleared by software.
0	ROI	Receive interrupt flag set by hardware after completion of a serial reception. Must be cleared by software.

UART0 Operating Modes

UART0 can operate in four distinct modes, which are defined by the SM0 and SM1 bits of the S0CON register (see following table).

TABLE 63: SERIAL PORT 0 MODES						
SM0	SM1	MODE	MODE DESCRIPTION BAU			
0	0	0	Shift Register	Fosc/12		
0	1	1	8-bit UART	Variable		
1	0	2	9-bit UART	Fclk/32 or /64		
1	1	3	9-bit UART	Variable		
			- O demonde en OMO			

"Note that the speed in mode 2 depends on SMOD bit in the Special Function Register PCON when SMOD = 1 fclk/32

RAMTRON

UART0 - Mode 0

In this Mode, pin RX0 is used as an input and an output, while TX0 is used only to output the shift clock. For an operation in this mode, 8 bits are transmitted with the LSB as the first bit. Additionally, the baud rate is fixed at 1/12 of the crystal oscillator frequency. In order to initialize reception in this mode, the user must set bits R0I and R0EN in the S0CON register to 0 and 1, respectively. Note that in other Modes, when R0EN=1, the interface begins to receive data.

UART0 - Mode 1

In this Mode, the RX0 pin serves as an input and the TX0 pin as a serial output and no external shift clock is used. In Mode 0, 10-bits are transmitted:

- Start bit (logic low);
- 8-bits of data (LSB first);
- A stop bit (logic high).

The start bit synchronizes data reception, with the 8-bits of received data then being available in the SOBUF register. Reception is completed once the stop bit sets the ROB8 flag in the SOCON register.

UART0 - Mode 2

In this Mode the RX0 pin is used as an input and an output while TX0 is used to output the shift clock. In Mode 2, 11 bits are transmitted/received. hese 11-bits consist of:

- Start bit (logic low)
- o 8 bits of data (LSB first),
- One programmable 9th bit,
- Stop bit (logic high).

The 9th bit is used for parity. In the data transmission case, bit TB80 of the S0CON is output as the 9th bit. For reception, the 9th bit will be stored captured in the RB80 bit of the S0CON register.

UART0 - Mode 3

6:0

Mode 3 is essentially identical to Mode 2, with the difference being that the internal baud rate generator or Timer1 can be used to set the baud rate.

UART0 - Baud Rate Generator Source

As mentioned previously, the UART0 baud rate clock can be sourced from either Timer 1 or the dedicated 10-bit baud rate generator.

Selection between these sources is enabled via the BAUDSRC bit of the U0BAUD register (see following table).

TABLE 64:	TABLE 64: (U0BAUD) UART0 BAUD RATE SOURCE SELECT - SFR D8H							
7	,	6	5	4	3	2	1	0
BAUD	SRC	-	-	-	-	-	-	-
7	BAUDSRC		Baud rate generator clock source					ce
			-	Timer 1				
			1 =	Use	UART) dedi	cated	Baud
				genera	ator			

/CMTR/

Using the UART0 dedicated baud rate generator, frees up Timer 1 for other uses.

The SORELH and SOREL registers are used to store the 10-bit reload value of the UART0 baud rate generator.

TABLE 65: (SORELL) SERIAL PORT 0, RELOAD REGISTER, LOW BYTE - SFR 96H							
7	6	5	4	3	2	1	0
SORELL [7:0]							

TABLE 66: (SORELH) SERIAL PORT 0, RELOAD REGISTER, HIGH BYTE - SFR 97H							
7	6	5	4	3	2	1	0
S0RELH [15:8]							

The following equations should be used to calculate the reload value for the SOREL register (examples follow).

Mode 3: For BAUDSRC=1

 $SOREL = 1024 - \frac{2^{SMOD}x f_{clk}}{64 x Baud Rate}$

Baud Rate = $2^{\text{SMOD}} \times f_{\text{clk}}$

64 x (1024 – S0REL)

TABLE 67: SERIAL 0 BAUD RATE SAMPLE VALUES BAUDSRC = 1, SMOD = 1

Desired	SOREL @ f _{clk} =	SOREL @ f _{clk} =
Baud Rate	11.059 MHz	14.75 MHz
500.0 kbps	-	-
460.8 kbps	-	3FFh
230.4 kbps	-	3FEh
115.2 kbps	3FDh	3FCh
57.6 kbps	3FAh	3F8h
19.2 kbps	3EEh	3E8h
9.6 kbps	3DCh	3D0h
2.4 kbps	370h	340h
1.2 kbps	2E0h	280h
300 bps	-	-

TABLE 68: SERIAL 0 BAUD RATE SAMPLE VALUES BAUDSRC =1, SMOD = 0

Desired Baud Rate	S0REL @ f _{clk} = 11.059 MHz	S0REL @ f _{clk} = 14.75 MHz
115.2 kbps	-	3FEh
57.6 kbps	3FDh	3FCh
19.2 kbps	3F7h	3F4h
9.6 kbps	3EEh	3E8h
2.4 kbps	3B8h	3A0h
1.2 kbps	370h	340h
300 bps	1C0h	100

Timer1 can also be used as the baud rate generator for the UART0. Set BAUDSRC to 0 and assign Timer1's output to UART0.

When the baud rate clock source is derived from Timer1, the baud rate and timer reload values can be calculated using the following formulas (examples follow).

TABLE 69: EQUATION TO CALCULATE BAUD RATE FOR SERIAL 0

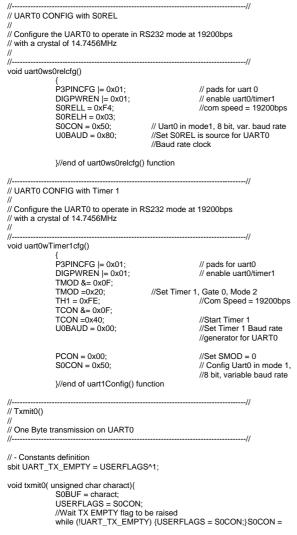
Serial 0: mode 1 and 3					
Mode 1: ForU0BAUD.7=0 (standard mode)					
Baud Rate = $\frac{2^{\text{SMOD}} \text{ x } f_{\text{clk}}}{32 \text{ x } 12 \text{ x } (256-\text{TH1})}$					
$TH1 = 256 - \frac{2^{SMOD} x f_{clk}}{32x12x Baud Rate}$					

TABLE 70: UART 0 BAUD RATE SAMPLE VALUES BAUDSRC =0, SMOD = 1

Desired Baud Rate	TH1 @ f _{cik} = 11.059 MHz	TH1 @ f _{clk} = 14.75 MHz
115.2 kbps	-	-
57.6 kbps	FFh	-
19.2 kbps	FDh	FCh
9.6 kbps	FAh	F8h
2.4 kbps	E8h	E0h
1.2 kbps	D0h	C0h
300 bps	40h	-

TABLE 71:UART 0 BAUD RATE SAMPLE VALUES BAUDSRC =0, SMOD = 0

Desired	TH1 @ f _{clk} =	TH1 @ f _{clk} =
Baud Rate	11.059 MHz	14.75 MHz
115.2 kbps	-	-
57.6 kbps	-	-
19.2 kbps	-	FEh
9.6 kbps	FDh	FCh
2.4 kbps	F4h	F0h
1.2 kbps	E8h	E0h
300 bps	A0h	80h


RAMTRON

Example of UART0 Setup and Use

In order to use UART0, the following operations must be performed:

- Enable the UART0 Interface
- Set I/O Pad direction TX= output, RX=Input
- Enable Reception (if required)
- Configure the Uart0 controller S0CON

The following are configuration and transmission code examples for UART0.

//clear both R0I & T0I bits S0CON & 0xFD; }//end of txmit0() function

See the Interrupt section for example of setup of UART0 interrupts

UART1 Serial Interface

The UART1 serial interface is based on a subset of UART0. It provides two operating modes and its clock source is derived exclusively from a dedicated 10-bit baud rate generator.

The UART1 Transmit and Receive buffers are accessed via SFR register S1BUF.

TABLE 72: (S1BUF) SERIAL PORT 1, DATA BUFFER - SFR C1H							
7	6	5	4	3	2	1	0
S1BUF [7:0]							

As is the case with UART0, UART1 includes a double buffering feature in order to avoid overwriting of the receive register.

UART1 Control Register

UART1 is controlled by the S1CON register. The following table provides a description of the UART1 Control Register.

TABLE 73: (S1CON) SERIAL PORT 1, CONTROL REGISTER - SFR C0H						
7	6	5	4			
S1M	Reserved	MPCE1	R1EN			
3	2	1	0			
T1B8	R1B8	T1I	R1I			

Bit	Mnemonic	Function
7	S1M	Operation mode Select
6	Reserved	-
5	MPCE1	1 = Enables multiprocessor
5		communication feature.
4	R1EN	If set, enables serial reception.
4	RIEN	Cleared by software to disable
		reception.
3	T1B8	The 9 th transmitted data bit in mode
3	TIDO	A. Set or cleared by the CPU,
		depending on the function it performs
		(parity check, multiprocessor
		communication, etc.)
2	R1B8	In Mode A, it is the 9 th data bit
2	KID0	received. In Mode B, if SM21 is 0,
		RB81 is the stop bit. Must be cleared by software.
1	T1I	,
1	1.11	Transmit interrupt flag, set by
		hardware after completion of a serial
0	D4L	transfer. Must be cleared by software
0	R1I	Receive interrupt flag, set by
		hardware after completion of a serial
		reception. Must be cleared by
		software

UART1: Operating Modes

The VMX51C1020 UART1 has two operating Modes, A and B, which provide 9 or 8-bit operation, respectively (see following table).

TABLE 74: UART1 MODES						
SM	MODE	DESCRIPTION	BAUD RATE			
0	A	9-bit UART	Variable			
1	В	8-bit UART	Variable			

UART1 - Mode A

In this Mode, 11 bits are transmitted or received. These 11 bits are composed of:

- o A start bit (logic low),
- o 8 bits of data (LSB first),
- o A programmable 9th bit,
- Stop bit (logic high).

As in Mode 2 and 3 of UART0, the 9th bit is used for parity. For data transmission, the TB81 bit of the S1CON register holds the 9th bit. In the case of reception, the 9th bit will be captured into the R1B8 bit of the S1CON register.

UART1 - Mode B

In this Mode, 10 bits are transmitted and consist of:

- A start bit (logic low)
- o 8 bits of data (LSB first);
- A stop bit (logic high).

Received data (8-bit) is read via the S1BUF register. Reception is completed once the stop bit sets the R1B8 flag in the S1CON register.

UART1 - Baud Rate Generator

As previously mentioned, UART1's clock source is derived from a dedicated 10-bit baud rate generator module.

The S1REL registers are used to adjust the baud rate of UART1.

TABLE 75: (S1RELL) UART1, RELOAD REGISTER, LOW BYTE - SFR BEH							
7	6	5	4	3	2	1	0
S1RELL [7:0]							

TABLE 76: (S1RELH) UART 1, RELOAD REGISTER, HIGH BYTE - SFR BFH							
7	6	5	4	3	2	1	0
S1RELH [7:0]							

The following formulas are used to calculate the baud Rate, S1RELL and S1RELH values.

Serial 1
Baud Rate= <u>f_{clk}</u> 32 x (1024-S1REL)
Note: S1REL.9-0 = S1RELH.1-0 + S1RELL.7-0
S1REL = 1024 - <u>f_{clk}</u> 32 x Baud Rate

TABLE 77: SERIAL 1 BAUD RATE SAMPLE VALUES

Desired Baud Rate	S1REL @ f _{clk} = 11.0592 MHz	S1REL @ f _{clk} = 14.746 MHz
500.0 kbps	-	-
460.8 kbps	-	3FFh
230.4 kbps	-	3FEh
115.2 kbps	3FDh	3FCh
57.6 kbps	3FAh	3F8h
19.2 kbps	3EEh	3E8h
9.6 kbps	3DCh	3D0h
2.4 kbps	370h	34Fh
1.2 kbps	2E0h	280h

Setting Up and Using UART1

In order to use UART1, the following operations must be performed:

- o Enable the UART1 Interface
- Set I/O Pad direction TX= output, RX=Input
- Enable Reception (if required)
- Configure the UART1 controller S1CON

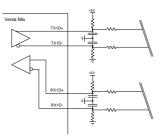
Example of UART1 Setup and Use

The following are C code examples of UART1 configuration, serial byte transmission and interrupt usage.

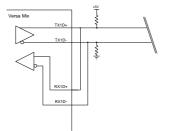
//		//
// // UART1 C //		"
// Configure // with a cry	stal of 14.7456MHz	RS232 mode at 115200bps
//void uart1C		//
	{ P0PINCFG = 0x04; DIGPWREN = 0x02; S1RELL = 0xFC; S1RELH = 0x03; S1CON = 0x90; }//end of uart1Config() fu	// pads for uart 1 // enable uart1 // Set com speed = 115200bps // Mode B, receive enable nction
// TXMIT1	Transmit one byte on the	
	(unsigned char charact){ S1BUF = charact; USERFLAGS = S1CON;	Y) {USERFLAGS = S1CON;} //Wait TX EMPTY flag D; //clear both R1I & T1I bits
// Interrunt	configuration	//
// IEN0 = 0x80; IEN2 = 0x01;		// Enable all interrupts // Enable interrupt UART 1
		//
	rial_1 (void) interrupt 16	
{ IEN0 &= 0x	<pre>/**/ /*Interrupt code here*/ /**/</pre>	// Disable all interrupts
if (S1CON8	k0x01==0x01)	
}		// Clear RI (it comes // before T1I)
	else { S1CON &= 0xFD; }	// Clear T1I
}	ÎEN0 = 0x80;} }	// Enable all interrupts

RAMTRSI

UART1 Driven Differential Transceiver


The VMX51C1020 includes a differential transceiver compatible with the J1708/RS-485/RS-422 standards. These are driven by UART1.

The Transceiver's signals are differential which provide high electrical noise immunity. The differential interface is capable of transferring/recieving data over hundreds of feet of twisted pair wire.


A number of devices can be connected in parallel to the differential bus in order to implement a multi-drop network. The number of devices that can be networked depends on the bus length and configuration.

The admissible common mode voltage range of the differential interface is -2.0 V to +7.0 V. When implementing this type of transmission network over long distances in noisy protection environments, appropriate is recommended in order to prevent the common mode voltage from causing any damage to the VMX51C1020.

FIGURE 27: DIFFERENTIAL INTERFACE (J1708 CONFIG)

FIGURE 28: DIFFERENTIAL INTERFACE (RS485 CONFIG)

From the software point of view, the differential transceiver is viewed as differential UART.

The differential transceiver I/Os are connected to UART1 of the VMX51C1020, therefore communication parameters such as the data length, speed, etc are managed by the UART1 peripheral interface/registers.

Using the UART1 Differential Transceiver

In order to use the Differential Transceiver interface, one must perform the following operations:

- Enable UART1 and the differential interface by setting bits 1 and 2 of the DIGPWREN register.
- Configure UART1's operating mode via the S1CON register.
- Set the baud rate via the S1RELH and S1RELL registers.
- o Enable UART1's interrupt, if required

Use UART1's S1BUF register to transmit and receive data through the differential transceiver. If the P0.2 pin is configured as an output, the signal corresponding to the TX1 signal of UART1 will appear on this pin (note that the P0.3-RX1 pin can be used as regular digital output).

When the transceiver is connected in Half-Duplex mode (RX1D+ connected to TX1D+ and RX1D- connected to TX1D-) and UART1's interrupts are enabled, careful management of the UART1 interrupts will be required as every byte transmitted will generate a local Rx interrupt.

7 | F

--//

Differential Interface Use Example

The following code provides and an example of configuration and use of the VMX51C1020 Differential Interface.

#pragma SMALL #pragma UNSIGNEDCHAR #include <vmixreg.h>

// --- function prototypes void txmit1(unsigned char charact); void uart1differential(void);

// - global variables

// - Constants definition sbit UART_TX_EMPTY = USERFLAGS^1;

code char irq0msg[]="Ramtron inc";

//-----_/ MAIN FUNCTION //--

at 0x0100 void main (void) {

// Enable and configure the UART1 uart1differential(); //Config UART1 diff interface

// Warning: The Clock Control circuit does affect the dedicated baud rate // generator S0REL, S1REL and Timer1 operation

//*** Configure the interrupts IEN0 |= 0x81; IEN2 |= 0x01;

//Enable interrupts + Ext. 0 interrupt //Enable UART1 Interrupt Txmit1("A'); //Transmit one character on UART1

//Wait for UART1 Rx interrupt

}while(1);

do

}// End of main()...

// UART1 Differential interface interrupt

// In this example, the source of UART1 interrupt would be caused // by bytes reception on the differential interface

void int_uart1 (void) interrupt 16 { unsigned char charact;

IEN0 &= 0x7F;

// -- Put you code here...

S1CON = S1CON & 0xFC; IEN0 |= 0x80;

//clear both R1I & T1I bits // enable all interrupts

}// end of uart1 INTERRUPT

 $^{\prime\prime}$ when the External interrupt 0 is triggered A Message string is sent over the // the serial UART1 -// void int_ext_0 (void) interrupt 0 { int x=0: idata unsigned char cptr=0x01; IEN0 &= 0x7F: //disable ext0 interrupt cptr = cptr-1;while(irq0msg[cptr] != '\n') //Send a text string over the differential interface txmit1(irq0msg[cptr]); cptr = cptr + 1;IEN0 = 0x81; //Enable all interrupts + int_0 //----- Individual Functions ---------// // UART1 DIFFERENTIAL CONFIG // Configure the UART1 differential interface to operate in // RS232 mode at 115200bps with a crystal of 14.7456MHz void uart1differential(void) DIGPWREN |= 0x06; // enable uart1 & differential transceiver P0PINCFG |= 0x04; P0PINCFG = 0x00; // pads for uart1 S1RELL = 0xFC; S1RELH = 0x03; // Set com speed = 115200bps S1CON = 0x90; // Mode E }//end of uart1differential() function // Mode B, receive enable --// // TXMIT1 \H'' Transmit one byte on the UART1 Differential interface void txmit1(unsigned char charact){ S1BUF = charact; USERFLAGS = S1CON; //Wait TX EMPTY flag to be raised while (!UART_TX_EMPTY) {USERFLAGS = S1CON;}

> S1CON = S1CON & 0xFD: }//end of txmit1() function

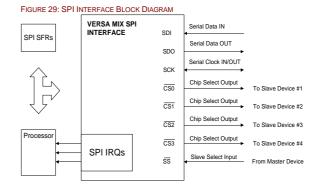
// EXT INT0 interrupt

11

//

//clear both R1I & T1I bits

SPI Interface


The VMX51C1020's SPI peripheral is a highly configurable and powerful interface enabling high speed serial data exchange with external devices such as A/Ds, D/Aa, EEPROMs, etc.

The SPI interface can operate as either a master or a slave device. In master mode, it can control up to 4 slave devices connected to the SPI bus.

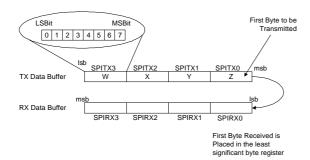
The following lists a number of the VMX51C1020's SPI features.

- o Allows synchronous serial data transfers
- Transaction size is configurable from 1-32-bits and more.
- o Full duplex support
- SPI Modes 0, 1, 2, 3 and 4 supported (Full clock polarity and phase control)
- Up to four slave devices can be connected to the SPI bus when it is configured in master mode
- Slave mode operation
- o Data transmission speed is configurable
- Double 32-bit buffers in transmission and reception
- o 3 dedicated interrupt flags
 - o TX-Empty
 - o RX Data Available
 - o RX Overrun
- Automatic/Manual control of the chip selects lines.
- SPI operation is not affected by the clock control unit

The following provides a block diagram view of the SPI Interface.

SPI Transmit/Receive Buffer Structure

When receiving data, the first byte received is stored in the SPIRX0 Buffer. As bits continue to arrive, the data already present in the buffer is shifted towards the least significant byte end of the receive registers (see following figure).


For example (see following figure), assume the SPI is about to receive 4 consecutive bytes of data: W, X, Y and Z, where the first byte received is byte W, The first received byte (W) will be placed in the SPIRX0 register. Upon reception of the next byte (X), the contents of SPIRX0 will be shifted into SFR register SPIRX1 and byte X will be placed in the SPIRX0 registers. Following this same procedure, we bytes W, X, Y and Z will end up in RX data buffer registers SPIRX0, SPIRX1, SPIRX2 and SPIRX3, respectively.

The case where the SDO and SDI pins are shorted together is represented in the following diagram.

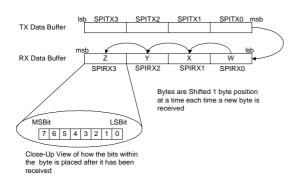


FIGURE 30 : SPI INTERFACE RECEIVE TRANSMIT SCHEMATIC

BEFORE A RECEPTION

AFTER A RECEPTION

When using the SPI Interface, it is important to keep in mind that a transmission is started when the SPIRX3TX0 register is written to.

From an SFR point of view, the transmission and reception buffers of the SPI interface occupy the following addresses.

TABLE 78: (SPIRX3TX0) SPI DATA BUFFER, LOW BYTE - SFR E1H								
7	6	5	4	3	2	1	0	
	SPIRX3TX0 [7:0]							
Bit	Mnemonic		Function					
7-0	SPITX0		SPI Transmit Data Bits 7:0					
	SPIRX3 SPI Receive Data Bits 31:24							
TABLE 79: (SPIRX2TX1) SPI DATA BUFFER, BYTE 1 - SFR E2H								

7	6	5	4	3	2	1	0
SPIRX2TX1 [15:8]							

Bit	Mnemonic	Function
15:8	SPITX1	SPI 1 Transmit Data Bits 15:8
	SPIRX2	SPI Receive 1 Data Bits 23:16

7	6	5	4	3	2	1	0
		SF	PIRX1T	X2 [23:1	6]		
Bit	Mnemonic Function						
22:16	SPIT	X2	SPI Transmit Data Bits 23:16				
	SPIR	X1	SPI Receive Data Bits 15:8				
TABLE 81: (SPIRX0TX3) SPI DATA BUFFER, HIGH BYTE - SFR E4H							
ABLE 81: (SPIRX0T	X3) SPI D	ATA BUFFE	R, HIGH B	YTE - SFR	E4H	

Bit	Mnemonic	Function
31:24	SPITX3	SPI Transmit Data Bits 31:24
	SPIRX0	SPI Receive Data Bits 7:0

SPI Control Registers

The SPI Control registers are used to define:

- SPI operating speed (Master mode)
- Active Chip Select Output (Master mode)
- SPI clock Phase (Master/Slave modes).
- o SPI clock Polarity (Master/Slave modes).

ABLE 82: (SPICTRL	.) SPI CONTROL REGISTER	- SFR E5H	

7	6	5	4
	SPICS_1		

3	2	1	0
SPICS_0	SPICKPH	SPICKPOL	SPIMA_SL

Bit	Mnemonic	Function
7:5	SPICK[2:0]	$\begin{array}{l} \text{SPI Clock control} \\ 000 = \text{OSC Ck Div 2} \\ 001 = \text{OSC Ck Div 4} \\ 010 = \text{OSC Ck Div 4} \\ 011 = \text{OSC Ck Div 16} \\ 100 = \text{OSC Ck Div 16} \\ 100 = \text{OSC Ck Div 32} \\ 101 = \text{OSC Ck Div 64} \\ 110 = \text{OSC Ck Div 128} \\ 111 = \text{OSC Ck Div 256} \end{array}$
4:3	SPICS[1:0]	Active CS line in Master Mode 00 = CS0- Active 01 = CS1- Active 10 = CS2- Active 11 = CS3- Active
2	SPICKPH	SPI Clock Phase
1	SPICKPOL	SPI Clock Polarity 0 – CK Polarity is Low 1 – CK Polarity is High
0	SPIMA_SL	Master / -Slave 1 = Master 0 = Slave

SPI Operating Speed

Three bit in the SPICTRL register serve to adjust the communication speed of the SPI interface.

SPICK[2:0] Div Ratio	Fosc = 14.74MHz	Fosc = 11.059MHz
Clk Div 2	7.37 MHz	5.53 MHz
Clk Div 4	3.68 MHz	2.76 MHz
Clk Div 8	1.84 MHz	1.38 MHz
Clk Div 16	922 kHz	691 kHz
Clk Div 32	461 kHz	346 kHz
Clk Div 64	230 kHz	173 kHz
Clk Div 128	115 kHz	86 kHz
Clk Div 256	57.6 kHz	43.2 kHz

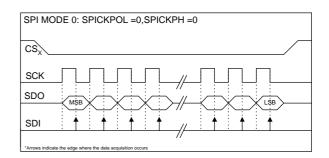
SPI Master Chip Select Control

When the SPI is configured in Master mode, the value of the SPICS[1:0] bits will define which Chip select pins will be active during the transaction.

The following sections will describe how the SPI Clock Polarity and Phase affects the read and write operations of the SPI interface.

SPI Operating Modes

The SPI interface can operate in four distinct modes defined by the SPICKPH and SPICKPOL bits of the SPICTRL register.


SPICKPH defines the SPI clock phase and SPICKPOL defines the Clock polarity for data exchange.

SPICKPOL bit value	SPICKPH bit value	SPI Operating Mode
0	0	SPI Mode 0
0	1	SPI Mode 1
1	0	SPI Mode 2
1	1	SPI Mode 3

SPI Mode 0

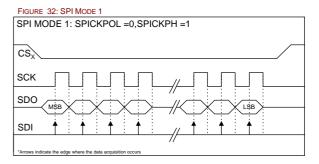
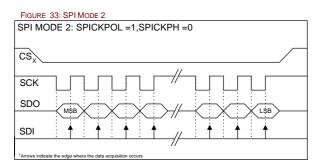

- Data is placed on the SDO pin at the rising edge of the clock.
- Data is sampled on the SDI pin at the falling edge of the clock.

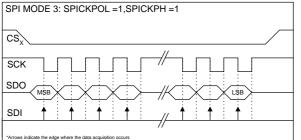
FIGURE 31 : SPI MODE 0

SPI Mode 1


- Data is placed on the SDO pin at the falling edge of the clock.
- Data is sampled on the SDI pin at the rising edge of the clock.

RAMTRON

SPI Mode 2


- Data is placed on the SDO pin at the falling edge of the clock.
- Data is sampled on the SDI pin at the rising edge of the clock.

SPI Mode 3

- Data is placed on the SDO pin at the rising edge of the clock.
- Data is sampled on the SDI pin at the falling edge of the clock.

FIGURE 34: SPI MODE 3

SPI Transaction Size

Many SPI based microcontrollers only allow a fixed SPI transaction size of 8-bits. However, most devices requiring SPI control require transactions of more than 8-bits, giving way to alternate inefficient means of dealing with SPI transactions.

The VMX51C1020 SPI interface includes a transaction size control register, SPISIZE that enables different sized transaction to be performed. The SPI interface also automatically controls the Chip select line.

The following table describes the SPISIZE register.

TABLE 83:	TABLE 83: (SPISIZE) SPI SIZE CONTROL REGISTER - SFR E7H							
7 6 5		7 6		4	3	2	1	0
	SPISIZE[7:0]							
Bit	Bit Mnemonic Function							
7:0 SPISIZE[7:0] Value of the SPI packet size								

The following formula is used to calculate the transaction size.

For SPISIZE from 0 to 31:

SPI Transaction Size = [SPISIZE + 1]

For SPISIZE from 32 to 255*:

SPI Transaction Size = [SPISIZE*8 - 216]

An SPI transaction size greater than 32 bits is possible when using the VMX51C1020 SPI interface, however, large data packets of this size require careful management of the associated interrupts in order to avoid buffer overwrites.

SPI Interrupts

The SPI interface has three associated interrupts.

- o SPI RX Overrun
- SPI RX Data Available
- SPI TX Empty

The SPIRXOVIE, SPIRXAVIE and SPITXEMPIE bits of the SPICONFIG register allow individual enabling of the above interrupt sources at the SPI interface level.

At the processor level, two interrupt vectors are dedicated to the SPI interface:

- SPI RX data available and Overrun interrupt
- SPI TX empty interrupt

In order to have the processor jump to the associated interrupt routine, you must also enable one or both of these interrupts in the IEN1 register as well as set the EA bit of the IEN0 register (see interrupt section).

TABLE 84: (SPICONFIG) SPI CONFIG REGISTER - SFR E6H						
7	6	5	4			
SPICSLO	-	FSONCS3	SPILOAD			
3	2	1	0			
-	SPIRXOVIE	SPIRXAVIE	SPITXEMPIE			

Bit	Mnemonic	Function
7	SPICSLO	Manual CS up (Master mode) 0 = The CSx goes low when transmission begins and returns to high when it ends. 1 = The CSx stays low after transmission ends. The user must clear this bit for the CSx line to return high.
6	-	-
5	FSONCS3	This bit sends the frame select pulse on CS3.
4	SPILOAD	This bit sends load pulse on CS3.
3	-	-
2	SPIRXOVIE	SPI Receiver overrun interrupt enable.
1	SPIRXAVIE	SPI Receiver available interrupt enable.
0	SPITXEMPIE	SPI Transmitter empty interrupt enable.

The SPIIRQSTAT register contains the interrupts flags associated with the SPI interface.

Monitoring these bits allows polling the control of the SPI interface.

TABLE 85: (SPIIRQSTAT) SPI INTERRUPT STATUS REGISTER - SFR E9H

	1	6	5	4
	-	-	SPITXEMPTC) SPISLAVESEL
ſ	3	2	1	0
	SPISEL	SPIOV	SPIRXAV	SPITXEMP

D'1	Max a second a	E C			
Bit	Mnemonic	Function			
7:6	-	-			
5	SPITXEMPTO	Flag that indicates that we have not reloaded the transmit buffer fast enough (only used for packets greater than 32 bits.).			
4	SPISLAVESEL Slave Select "NOT" (SSN)				
3	SPISEL	This bit is the result of the logical AND operation between CS0, CS1, CS2 and CS3. (Indicates if one chip is selected.)			
2	SPIOV	SPI Receiver overrun			
1	SPIRXAV	SPI Receiver available			
0	SPITXEMP	SPI Transmit buffer is ready to receive mode data. It does not flag that the transmission is completed.			

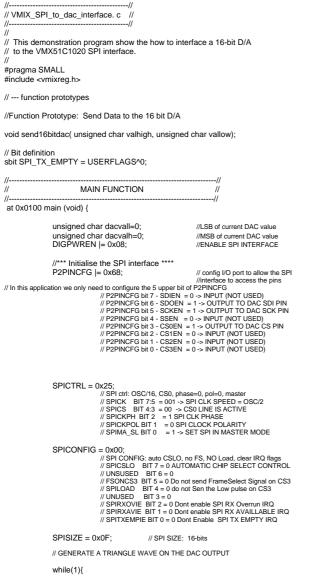
SPI Manual Chip Select Control

In some applications, manual control of the active select line can be useful. Setting the SPICSLO bit of the SPICONFIG register forces the active chip select line to stay low when the SPI transaction is completed in Master mode. When the SPICSLO bit is cleared, the Chip select line returns to its inactive state.

SPI Manual Load Control

The SPI can generate a LOAD pulse on the CS3 pin when the SPILOAD bit is set. This is useful for some D/A converters and avoids having to use a separate I/O pin for this purpose.

RAMTRON


SPI Frame Select Control

It's also possible to generate a positive pulse on the CS3 pin of the SPI interface by setting the FSONCS3 bit of the SPICONFIG register. This feature can be used to generate a Frame Select signal required by some DSP compatible devices without requiring the use of a separate I/O pin.

Note that when both the SPILOAD and FSONCS3 are selected, the internal logic give priority to the Frame Select pulse.

SPI Interface to 16-bit D/A Example

The following is a code example for doing 16-bit transfers over the the SPI interface.

dacvall = dacvall + 1; if(dacvall==0xff) { dacvalh = dacvalh +1; dacvall = 0x00;

do{

send16-bitdac(dacvalh, dacvall); }while((dacvall != 0xff) && (dacvalh != 0xff));

do{ dacvall = dacvall - 1; if(dacvall==0x00) { dacvalh = dacvalh - 1; dacvall = 0xff; } send16-bitdac(dacvalh, dacvall); }while((dacvall != 0x00) && (dacvalh != 0x00));

}// End of main()...

//------// // Send16-bitdac - Send data to 16 bit D/A Converter // //-----// void send16-bitdac(unsigned char valligh, unsigned char vallow){ // USERFLAGS = 0x00; // While(!SPI_TX_EMPTY){USERFLAGS = SPIIRQSTAT;}

 SPIRX2TX1 = vallow;
 //Put LSB of value in SPI transmit buffer

 //>> trigger transmission

 SPIRX3TX0 = valhigh;
 //Put MSB of value in SPI transmit buffer

 //Put MSB of value in SPI transmit buffer

 //>> trigger transmission

 do{
 //Wait SPI TX empty flag to be activated

 USERFLAGS = P2;

 USERFLAGS &= 0x08;

 While (USERFLAGS == 0);

}//end of send16-bitdac

RAMTRL

SPI Interrupt Example

The following provides an example of basic SPI configuration and Interrupt handling.

//	//
// Sample C code for SPI	RX & TX interrupt set-up
	//
// #pragma SMALL	
#include <vmixreg.h></vmixreg.h>	
at 0x0100 main (void) {	
DIGPWREN = 0x08; P2PINCFG = 0x4F; SPICONFIG = 0x03;	// Enable SPI // Set pads direction // Enable Rx_avail + TX_empty
SPISIZE = 0x07;	// SPI SIZE: 8 bits
	<i>// =</i>
IEN0 = 0x80; IEN1 = 0x06;	// Enable all interrupts // Enable SPI Txempty + RXavail interrupt
SPIRX3TX0 = valhigh;	//Put MSB of value in SPI transmit buffer //-> trigger transmission
Do{	}while(1)
}//end of main()	
//	//
// SPI TX Empty Interrupt	
void int_2_spi_tx (void) in	terrupt 9
IEN0 &= 0x7F;	// Disable all interrupts
/*	*/
/* Interrupt c /*	
IRCON &= 0xFD; IEN0 = 0x80; }	// Clear flag SPITXIF // Enable all interrupts
//	//
// SPI RX availlable function	on //
void int_2_spi_rx (void) in	terrupt 10
IEN0 &= 0x7F;	// Disable all interrupts
/* /* Interrupt c /*	code here*/
IRCON &= 0xFB; IEN0 = 0x80; }	// Clear flag SPIRXIF // Enable all interrupts
//	//

Due to the double buffering of the SPI interface, an SPI TX empty interrupt will be activated as soon as the data to be transmitted is written into the SPI interface transmit buffer. If data is subsequently written into the SPI transmit buffer before the original data has been transmitted, the TX empty interrupt will only be activated when the original data has been fully transmitted. The SPI also includes double buffering for data reception. Once a data reception is completed, the RX interrupt is activated and the data is transferred into the SPI RX buffer. At this point, the SPI interface can receive more data. However, the processor must have retrieved the first data stream before the second data stream reception is complete, otherwise a data overrun will occur and the SPI RX overrun interrupt will be activated, if enabled.

I²C Interface

The VMX51C1020 includes an I²C compatible communication interface that can be configured in Master mode or in Slave mode.

I²C Control Registers

The I2CRXTX SFR register is used to retrieve and transmit data on the I^2C interface.

TABLE86: (I2CRXTX) I2C DATA BUFFER - SFR DEH

7 6 5 4 3 2 1 0 I2CRXTX [7:0]

Bit	Mnemonic	Function
7:0	I2CRXTX[7:0]	I2C Data Receiver / Transmitter buffer

The I2CCONFIG register serves to configure the operation of the VMX51C1020 I^2C interface. The following table describes the I2CCONFIG register bits.

TABLE 87: (I2CCONFIG) I2C CONFIGURATION - SFR DAH

7	6		5		4	
I2CMASKID	I2CRXOVIE	OVIE I2CRXDA			I2CTXEMPIE	
3	2	2 1			0	
I2CMANACK	I2CACKMODE		E I2CMSTOP		OP I2CMASTER	

Bit	Mnemonic	Function
7	I2CMASKID	This is used to mask the chip ID when you have only two devices. Therefore in a transaction, rather that receiving the chip ID first, you will receive the first packet of data.
6	I2CRXOVIE	I2C Receiver overrun interrupt enable
5	I2CRXDAVIE	I2C Receiver available interrupt enable
4	I2CTXEMPIE	I2C Transmitter empty interrupt enable
3	I2CMANACK	1= Manual acknowledge line goes to 0 0= Manual acknowledge line goes to 1
2	I2CACKMODE	Used only with Master Rx, Master Tx, and Slave Rx. 1= Manual Acknowledge on 0= Manual Acknowledge off
1	I2CMSTOP	I2C Master receiver stops at next acknowledge phase. (read during data phase)
0	I2CMASTER	I2C Master mode enable 1= I2C interface is Master 0= I2C interface is Slave

The I2CIRQSTAT register provides the status of the I²C interface operation and monitors the I²C bus status.

TABLE 88: (I2CIRQSTAT) I2C INTERRUPT STATUS - SFR DDH						
	7	6	6		4	
I2CG	OTSTOP	I2CNOA	CK	I2CSDA	I2CDATACK	
	3	2		1	0	
12C	IDLE	I2CRXOV	,	I2CRXAV	I2CTXEMP	
Bit	Mn	emonic		Fund	ction	
7	I2CS	GOTSTOP	has rea the	This means that the slave has received a stop (this bit is read only). Reset only when the master begins a new transmission.		
6	I2CNOACK		acl rec	ig that indica knowledge h eived. Is res the next tran	as been et at the start	
5	12	2CSDA	Value of SDA line.			
4	I2C	I2CDATACK		Data acknowledge phase.		
3	12	I2CIDLE		licates that I	2C is idle	
2	120	CRXOV	120	Receiver o	verrun	
1	120	CRXAV	120	Receiver a	vailable	
0	I2C	TXEMP	120	C Transmitter	r empty	

The I2CCHIPID register holds the VMX51C1020 I^2C interface ID as well as the status bit that indicates if the last byte monitored on the I^2C interface was destined for the VMX51C1020 or not.

The reset value of this register is 0x42, corresponding to an I²C Chip ID of 0x21. The chip ID value of the VMX51C1020 can be dynamically changed by writing the desired ID into the I2CCHIPID register (see following table).

TABLE 89: (I2CCHIPID) I2C CHIP ID - SFR DCH						
7 6 5 4 3 2 1 0						
I2CID [6:0]						I2CWID

Bit	Mnemonic	Function
7:1	I2CID[6:0]	The value of this chip's ID
0	I2WID	Read Only and is used only in slave mode. 0:The .ID received corresponds to the I2CID 1: The ID received do not correspond to the I2CID

The I2WID bit is "read only" and used only in Slave mode and is an indicator of whether the transaction is targeted to the VMX1020 device.

If the device ID sent by the Master device corresponds to the I2CID value stored in the I2CCHIPID, the I2WID bit will be cleared to 0 by the I2C module. If the transaction was destined for another I2C slave device, the I2WID bit will be set to 1.

The I2WID value is valid at the moment the device ID transmission from the master device on the I^2C bus has completee.

In the case where the I^2C RX available interrupt is activated, once the device ID is received, an I^2C RX available interrupt will be triggered. The interrupt service routine should then monitor the I2WID bit in order to establish if the transaction is destined for this VMX1020 device.

If the I2WID bit is set to 1, the I^2C interrupt service routine can be terminated and there won't be another I^2C Rx available interrupt until the next I^2C transaction.

If the I2WID bit is cleared, the RX Available interrupt, if enabled, will be triggered for each data byte received.

I²C Clock Speed

The VMX51C1020's I^2C communication speed is fully configurable.

Control of the I²C communication speed enabled via the I2CCLKCTRL register. The following

formula is used to calculate the I²C clock frequency in Master mode.

 $I^2C Clk =$ [8 x (I2CCLKCTRL)]

The following table provides examples of I^2C clock (on SCL pin) speeds for various setting of the I2CCLKCTRL register when using a 14.75MHz oscillator to drive the VMX51C1020.

I2CCLKCTRL Value	I2C Clock (SCL Value)
01h	920kHz
03h	461KHz
07h	230KHz
13h	92KHz
27h	46KHz
C7h	9.2KHz

When the l^2C interface is configured for slave modethe l2CCLKCTRL is not used

TABLE 90:	(I2CCLKC	TRL) 120	CLOCK CC	NTROL - S	FR DBH	
_	-			-	-	Г

	7	6	5	4	3	2	1	0
I2CCLKCTF						0]		
	Bit	Mnem	onic	Fur	nction			

7:0 I2CCLKCTRL I2C Clock speed control

I²C Interface Interrupts

The I^2C interface has a dedicated interrupt vector located at address 0x5B. Three flags (see below) share the I^2C interrupt vector and can be used to monitor the I^2C interface status making it possible to activate the I^2C interrupt.

I2CTXEMP:	Is set to 1 when the transmit buffer is empty
I2CRXAV:	
IZGRAAV.	Is set to 1 when data byte reception
	completes.
I2CRXOV:	Is set to 1 if a new byte reception
	completes before the previous data in
	the reception buffer is read, resulting in
	a data collision.

These flags can all trigger the I²C interrupt if their corresponding bit in the I2CCONFIG register is set to one.

In the case where more than one of these flags can activate an I^2C interrupt, the interrupt service routine is left to figure out which condition generated the interrupt.

Note that the I2CRXAV, I2CTXEMP and I2CRXOV flags can still be polled if their corresponding interrupt enable flag is cleared. Therefore they can still be used to monitor status.

Master I²C Operation

In Master mode, the VMX51C1020 I^2C interface controls the I^2C bus transfers. In order to configure the I^2C interface as a Master, the I2CMASTER bit of the I2CCONFIG register must be set to one.

Once the I²C interface is configured, sending data to a Slave device connected to the bus is done by writing the data into the I2CRXTX register.

Before sending data to a Slave device, a byte containing the target device's chip ID and Read/Write bit must be sent to it.

A master mode data read is triggered by reading the I2CRXAV (bit 1) of the I2CIRQSTAT register. The data is present on the I2CRXTX register when the I2CRXAV bit is set. Reading the value of the I2CRXTX register resets the I2CRXAV bit. Once started, the I^2C byte read process will continue until the Master generates a STOP condition.

When the l^2C interface is configured as a Master, setting the l2CMSTOP bit of the l2CCONFIG register to a 1 will result in the l^2C interface generating a STOP condition after the reception of the next byte.

In Master Mode, it's possible to manually control the operation of the acknowledged timing when receiving data. To do this, you must first set the I2CMANACK bit of the I2CCONFIG register to 1. Then, once you have received a byte, you can manually control the acknowledge level by clearing or setting the I2CMANACK bit.

Note: The VMX51C1020 I²C Interface is not compatible with the I²C multi-master mode.

Slave I²C Operation

The VMX51C1020 I^2C interface can be configured as a Slave by clearing the I2CMASTER bit of the I2CCONFIG register.

In Slave mode, the VMX51C1020 has no control over the rate or timing of the data exchange that occurs on the l^2C bus. Therefore, in Slave mode, it is preferable to manage the transactions using the l^2C interrupts.

The I2CMASKID bit, when set, will configure the Slave device to mask the received ID byte and receive the data directly. This is useful when only two devices are present on the I^2C bus.

Note: When the VMX51C1020 starts transmitting data in Slave mode, it will continually transmit the value present in the I²C transmit register as long as the Master provides the clock signal or until the Master device generates a STOP condition

Errata:

The VMX1020 ²C Interface has a critical timing issue when the device is configured as a Slave and transmits multiple data bytes. Single byte transmission in slave mode is not effected.

The condition arises if the Master device releases the SDA line at the same time it brings the SCL line low for the Acknowledge phase.

In order for the VMX1020 $m ^2C$ Slave transmission to work properly for multiple bytes, the Master device MUST release the SDA line AFTER the SCL negative edge.

For this reason it is not possible to have a VMX1020 device configured as an $L^{\circ}C$ Master and VMX1020 devices configured as $L^{\circ}C$ Slaves on the same $L^{\circ}C$ bus. Unless data transmitted from VMX1020 $L^{\circ}C$ Slaves to the $L^{\circ}C$ Master is done one byte at a time.

I²C EEPROM Interface Example Program

The following provides an example program using the VMX51C1020 I²C interface for performing read and write operations to an externally connected EEPROM device.

#pragma SMALL #include <vmixreg.h>

// --- Function prototypes unsigned char, idata unsigned char); void eewrite(idata unsigned char, idata unsigned char, unsigned char); // - Global variables idata unsigned char irqcptr=0x00; sbit I2C_TX_EMPTY = USERFLAGS^0; sbit I2C_RX_AVAIL = USERFLAGS^1; sbit I2C_IS_IDLE = USERFLAGS^3; sbit I2C_NO_ACK = USERFLAGS^6; MAIN FUNCTION //void main (void){ unsigned char x=0; DIGPWREN = 0x13; //Enable the I2C peripheral //*** configure I2C Speed. I2CCLKCTRL = 0x013; //...To about 100KHZ... //*** Configure the interrupts IEN0 |= 0x81; //Enable Ext INT0 interrupt + main //*** infinite loop waiting for ext IRQ while(1){ }; }// End of main()... // EXT INT0 interrupt // When the External interrupt 0 is triggered read and write // operations are performed on the EEPROM void int_ext_0 (void) interrupt 0 { // Local variables declaration idata unsigned char eedata; idata unsigned char adrsh =0; idata unsigned char adrsl =0: idata int adrs =0: 11 IEN0 &= 0x7F; //disable ext0 interrupt //(Masked for debugger compatibility) //Write irqcptr into the EEPROM at adrs 0x0100 eewrite(0x01,0x00,irqcptr); irqcptr = irqcptr + 1;//Increment the Interrupt counter //Perform an EEPROM read at address 0x100 eedata = eeread(0x01, 0x00); delay1ms(100); //Debo delay for the switch on INT0 // IEN0 = 0x81; // enable all interrupts + int_0 (Removed //for debugger compatibility) }// end of EXT INT 0 -// INDIVIDUALS FUNCTIONS -// --// EEREAD - EEPROM Random Read // // unsigned char eeread(idata unsigned char adrsh, idata unsigned char adrsl) idata unsigned char x=0; idata unsigned char readvalue=0;

amrssi

I2CCONFIG = 0x03; //I2C MASTER MODE NO INTERRUPT

I2CRXTX = 0xA8; //SEND 24LC64 ADRS + write COMMAND USERFLAGS = 0x00; while(!I2C_TX_EMPTY){USERFLAGS = I2CIRQSTAT;}

I2CRXTX = adrsh; //SEND 24LC64 ADRSH USERFLAGS = 0x00; while(!!2C_TX_EMPTY){USERFLAGS = I2CIRQSTAT;}

I2CRXTX = adrsl; I2CRX1X = adrsi; //SEND 24LC64 ADRSL USERFLAGS = 0x00; while(II2C_TX_EMPTY){USERFLAGS = I2CIRQSTAT;} USERFLAGS = 0x00;

//wait for I2C interface to be idle while(!I2C_IS_IDLE){USERFLAGS = I2CIRQSTAT;}

I2CCONFIG &= 0xFD; //set Master Rx Stop, only 1 byte to receive

I2CCONFIG |= 0x02;

I2CRXTX = 0xA9; // Chip ID read

USERFLAGS = 0x00; while(!!2C_RX_AVAIL){USERFLAGS = I2CIRQSTAT;}

readvalue = I2CRXTX;

USERFLAGS = 0x00; while(II2C_IS_IDLE){USERFLAGS = I2CIRQSTAT;} //Wait for I2C IDLE readvalue: return

}//End of EEREAD

//-// EEWRITE - EEPROM Random WRITE //

void eewrite(idata unsigned char adrsh, idata unsigned char adrsl, unsigned char eedata)

> idata unsigned char x; I2CCONFIG = 0x01; //I2C MASTER MODE NO INTERRUPT I2CRXTX = 0xA8;

//SEND EEPROM ADRS + READ //COMMAND USERFLAGS = 0x00; while(!!2C_TX_EMPTY){USERFLAGS = I2CIRQSTAT;}

-//

-//

//SEND ADRSH I2CRXTX = adrsh: USERFLAGS = 0x00; while(!I2C_TX_EMPTY){USERFLAGS = I2CIRQSTAT;}

I2CRXTX = adrsl; //SEND ADRSL

USERFLAGS = 0x00; while(!I2C_TX_EMPTY){USERFLAGS = I2CIRQSTAT;}

I2CRXTX = eedata; //SEND 24LC64 DATA and wait //for I2C bus IDLE USERFLAGS = 0x00:

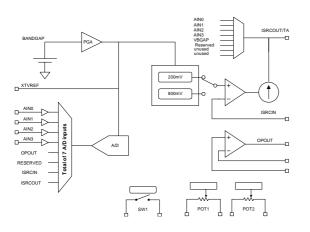
while(!!2C_IS_IDLE){USERFLAGS = I2CIRQSTAT;} ///--Wait Write operation to end

12CCONFIG = 0x01//I2C Master Mode no Interrupt

do{

do{ I2CRXTX = 0xA8; //Send 24LC64 Adrs +read Con USERFLAGS = 0x00; while(II2C_TX_EMPTY){USERFLAGS = I2CIRQSTAT; USERFLAGS = I2CIRQSTAT; }while(I2C_NO_ACK); delay1ms(5); //Sms delay for EEPROM write }// End of EEPROM Write //Send 24LC64 Adrs +read Command

RAMTRON


Analog Signal Path

The VMX51C1020 implements a complete single chip acquisition system by integrating the following analog peripherals:

- 12-bit A/D converter having 4 external inputs as well as 3 internal connections to the Operational amplifier and Current source input and output for a <u>total of 7</u> <u>inputs</u>. The ADC conversion rate is programmable up to 10KHz
- o Internal Bandgap reference and PGA
- 1 Programmable current source
- o 2 Digital potentiometers
- o 1 Digital switch

The following figure provides a block diagram of the VMX51C1020's analog peripherals and their connection.

FIGURE 35: ANALOG SIGNAL PATH OF THE VMX51C1020

The on-chip calibrated bandgap or the external reference provides the basis for all derived onchip voltages. These signals serve as reference for the ADC and the current source.

Analog Peripheral Power Control

Selection of the internal/ external reference, the multiplexer's current source drive, ADC control, and the respective power downs for these peripherals are controlled via the ANALOGPWREN SFR registers.

Internal Reference and PGA

The VMX51C1020 provides a temperature calibrated internal bandgap reference coupled with a programmable gain amplifier.

The programmable gain amplifier's role is to amplify the bandgap output to 2.7 volts and provide the drive required for the ADC reference input and current source.

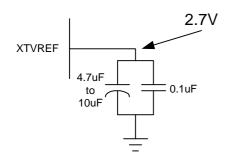
Both the bandgap and the PGA are calibrated during production and their associated calibration registers are automatically loaded with the appropriate calibration vectors when the device is reset.

The bandgap and PGA calibration vectors are stored into the BGAPCAL and PGACAL SFR registers when a reset occurs. It is possible for the user program to overwrite the contents of those registers.

TABLE 91: (BGAPCAL) BAND-GAP CALIBRATION VECTOR REGISTER - SFR B3H							
7	6	5	4	3	2	1	0
	BGAPCAL [7:0]						
Bit	Mne	emonic	Fur	nction			
7:0	BGA	PCAL	Bai	nd-gap c	lata cali	bration	
TABLE 92:	(PGACAL) PGA CAI	IBRATION	VECTOR R	EGISTER - S	SFR B4H	
7	6	5	4	3	2	1	0
			PGAC	AL [7:0]			
	-						
Bit	Mne	emonic	Fur	Function			
7:0	PGACAL		8	8 MSBs of PGA Calibration			oration
			Ve	ctor (LSI	Bit is or	ISRCC	CAL1)

Using the VMX51C1020 Internal Reference

The configuration and setup up of the VMX51C1020's internal reference is done by setting bits 0 and 1 of the ANALOGPWREN register to 1. This powers on the bandgap and the PGA, respectively.


'AMTR'

Use of the internal reference requires the addition of two external tank capacitors on the XTVREF pin.

These capacitors consist of one 4.7uF to 10uF Tantalum capacitor in parallel with one 0.1uF Ceramic capacitor.

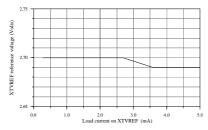
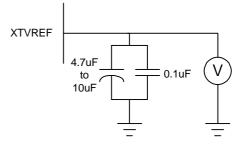

The following shows the connection of the tank capacitors to the XTVREF pin

FIGURE 36: TANK CAPACITORS CONNECTION TO THE XTVREF PIN

The VMX51C1020 internal reference can also be used as an external reference provided that the load on the XTVREF pin is kept to a minimum. The following table shows the typical effect of loading on the XTVREF voltage.

FIGURE 37: TANK CAPACITORS CONNECTION TO THE XTVREF PIN

It is recommended that the external load on the XTVREF pin be less than 1mA.


Note: A stabilization delay of more than 1ms should be provided between the activation of the bandgap, the PGA and the first A/D conversion or measurement made on the programmable current source.

Using an External Reference

An external reference can be used to drive the VMX51C1020 ADC and the programmable current source instead of the internal reference.

The external reference voltage source can be set from 0.5 to 3.5 volts and must provide sufficient drive to operate the ADC load.

FIGURE 38: EXTERNAL REFERENCE CONNECTION TO THE XTVREF PIN

Warning:

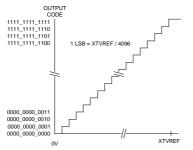
When an external reference source is applied to the XTVREF pin, it is mandatory not to power-on the PGA. The internal bandgap reference should also be kept de-activated.

Reference Impact on the Programmable Current Source

The Programmable Current Source uses the same reference as the ADC for its operation, therefore, using an external reference will have a direct impact on the current source output.

The 200/800mV current source reference voltage, calibrated at 2.7V will change in a linear fashion according to the voltage present on the XTVREF pin.

For example, in the case where the reference voltage applied to the XTVREF pin is 3V, the current source reference voltage will be scaled up by a factor of [VXTVREF/2.7V] to 222mV and 889mV respectively.


A/D Converter

The VMX51C1020 includes a feature rich, highly configurable on-chip 12-bit A/D converter.

The A/D conversion data is output as unsigned 12-bit binary, with 1 LSB = Full Scale/4096. The following figure describes the ideal transfer function for the ADC.

<u>Ramtron</u>

FIGURE 39: IDEAL A/D CONVERTER TRANSFER FUNCTION

The A/D converter includes a system that provides the ability to trigger automatic periodic conversions of up to 10kHz without processor intervention.

Once the conversion is complete, the A/D system can activate an interrupt that can wakeup the processor (assuming it has been put into idle mode) or automatically throttle the processor clock to full speed.

The VMX51C1020 A/D converter can also be configured to perform the conversion on one specific channel or on four consecutive channels (in round-robin fashion).

These features make the A/D adaptable for many applications.

The following paragraphs describe the VMX51C1020's A/D converter register features.

ADC Data Registers

The ADC data registers hold the ADC conversion results. The ADCDxLO register(s) hold the 8 Least Significant Bits (LSBs) of the conversion results while the ADCDxHI register(s) hold the 4 Most Significant Bits (MSB) of the conversion results.

				NNNEL 0 DATA REGISTER, LOW BYTE - SFR A6H			
Bit	-	emoni	-	Function			
7:0	ADC	DOL	0	ADC channel 0 low			
TABLE 94	TABLE 94: (ADCD0HI) ADC CHANNEL 0 DATA REGISTER, HIGH BYTE - SFR A7H						
Bit		emoni		Function			
3:0		CD0H		ADC channel 0 high			
	TABLE 95: (ADCD1LO) ADC CHANNEL 1 DATA REGISTER, LOW BYTE - SFR A9H						
7	6	5	4				
			AL	DCD1LO [7:0]			
Bit	Mne	emoni	ic	Function			
7:0		D1L		ADC channel 1 low			
			_				
		I) ADC	CHAN	NNEL 1 DATA REGISTER, HIGH BYTE - SFR AAH			
7	6	5	_	4 3 2 1 0 - ADCD1HI [3:0]			
	-	_		- ADCD IIII [5.0]			
Bit	Mne	emoni	ic	Function			
3:0		CD1H		ADC channel 1 high			
	<u>`</u>	1	C CHAN	NNEL 2 DATA REGISTER, LOW BYTE - SFR ABH			
7	6	5		4 3 2 1 0			
			AL	DCD2LO [7:0]			
Bit	Mne	emoni	ic	Function			
7:0		D2L		ADC channel 2 low			
		-	-				
	-			NNEL 2 DATA REGISTER, HIGH BYTE - SFR ACH			
7	6	5	4				
	-	-	-	ADCD2HI [3:0]			
Bit	Mne	emoni	ic	Function			
7:4		-		-			
3:0	ADO	CD2H	11	ADC channel 2 high			
				¥			
TABLE 99:	(ADCD3L	O) AD(NNEL 3 DATA REGISTER, LOW BYTE - SFR ADH			
7	6	5		4 3 2 1 0			
			A	DCD3LO [7:0]			
Bit	Mod	emoni	ic	Function			
7:0		D3L		ADC channel 3 low			
7.0			0	ADC channel 3 low			
TABLE 100): (ADCD3			ANNEL 3 DATA REGISTER, HIGH BYTE - SFR AEH			
7	6	5	4				
-	-	-	-	ADCD3HI [3:0]			
Dit	N 4			Function			
Bit 7:4	IVINE	emoni	IC	Function			
7:4		-		-			
3:0		CD3H	11	ADC channel 3 high			

ADC Input Selection

A/D conversions can be performed on a single channel, sequentially on the four lower channels, or sequentially on the four upper channels of the ADC input multiplexer.

An input buffer is present on each of the four external ADC inputs (ADIN0 to AIN3)

These buffers must be enabled before a conversion can take place on the ADC AIN0-

RAMTR

AIN3 inputs. These buffers are enabling by setting the corresponding bits of the lower nibble (AIEN [3:0]) of the INMUXCTRL register to 1.

TABLE 101: (INMUXCTRL) ANALOG INPUT MULTIPLEXER CONTROL REGISTER -

SER B5H							
7	6	5	4	3	2	1	0
-	ADC	ADCINSEL [2:0]			AINE	[3:0] ا	

Bit	Mnemonic	Function
7	-	-
6:4	ADCINSEL[2:0]	ADC Input Select 000 - AIN0 001 - AIN1
		010 - AIN2 011 - AIN3 100 - OPOUT 101 - VSR 110 - ISRCIN 111 - ISRCOUT
3:0	AINEN[3:0]	Analog Input Enable

The upper four bits of the INMUXCTRL register are used to define the channel on which the conversion will take place when the ADC is set to perform the conversion on one specific channel.

ADC Control Register

The ADCCTRL register is the main register used for control and operation of the ADC.

TABLE 102: (ADCCTRL) ADC CONTROL REGISTER - SFR A2H							
7	6	5	4				
ADCIRQCLR XVREFCAP		1	ADCIRQ				
3	2	1	0				
ADCIE	ONECHAN	CONT	ONESHOT				

Bit	Mnemonic	Function
7	ADCIRQCLR	ADC interrupt clear
		Writing 1 Clears interrupt
6	XVREFCAP	Always keep this bit at 1
5	Reserved = 1	Keep this bit = 1
4	ADCIRQ	Read ADC Interrupt Flag
		Write 1 generate ADC IRQ
3	ADCIE	ADC interrupt enable
2	ONECHAN	1 = Conversion is performed on
		one channel
		Specified ADCINSEL
		0 = Conversion is performed on
		4 ADC channels
1	CONT	1 = Enable ADC continuous
		conversion
0	ONESHOT	1 = Force a single conversion
		on 1 or 4 channels

ADC Continuous/One Shot Conversion

The CONT bit sets the ADC conversion mode. When the CONT bit is set to 1, the ADC will implement continuous conversions at a rate defined by the Conversion Rate register.

When the CONT bit is set to 0, the A/D operates in "One Shot" mode, initiating a conversion when the ONESHOT bit of the ADCCONTRL register is set.

ADC One Channel/ Four Channel Conversion

The VMX51C1020's ADC includes a feature that renders it possible to perform a conversion on one specific channel or on four consecutive channels.

This feature minimizes the load on the processor when reading more than one ADC input is required.

The ONECHAN bit of the ADCCTRL register controls this feature. When the ONECHAN is set to 1, the conversion will take place on the channel selected by the INMUXCTRL register. Once the conversion is completed, the result will be put into the ADCD0LO and ADCD0HI registers

When the ONECHAN bit is set to 0, the conversion, once triggered, will be done sequentially on four channels and the conversion results will be placed into the ADCDxLO and ADCDxHI registers.

Bit 6 of the INMUXCTRL register controls whether the conversion will take place on the four upper channels of the input multiplexer or the 4 lower channels.

<u>Ramtron</u>

ADC Clock Source Configuration

A/D converter derives its clock source from the main VMX51C1020 clock. The frequency of the ADC clock should be set between 250kHz to 1.25MHz

Configuration of the ADC clock source frequency is done by adjusting the value of the ADCCLKDIV register. The following equation is used to calculate the ADC reference clock value.

ADC Clock Reference Equation:

ADC Clk ref =
$$\frac{f_{OSC}}{4x (ADCCDIV +1)}$$

The ADC conversion requires 111 ADC clock cycles to perform the conversion on one channel.

The following table provides recommended ADCCLKDIV register values versus conversion rate. The numbers given are conservative figures and derived from a 14.74MHz clock

ADCCLKDIV	Maximum Conv. Rate*
0x02	10500 Hz
0x03	8000 Hz
0x05	5000 Hz
0x07	4000 Hz
0x08	3500 Hz
0x09	3200 Hz
0x0B	2500 Hz
0x0D, 0x0E, 0x0F	2200 Hz

* The maximum conversion rate is for the single channel condition. If the conversion is performed on 4 channels, divide the maximum conversion rate by 4. For example to perform the conversion at 2.5KHz on four channels, the ADCCLKDIV register should be set to 0x02 (4x 2500Hz =10KHz)

TABLE 103: (ADCCLKDIV) ADC CLOCK DIVISION CONTROL REGISTER - SFR 95H

	7	6	5	4	3	2	1	0
	ADCCLKDIV [7:0]							
	Bit Mnemonic				F	unction		
ſ	7:0				A	DC clo	ck divid	er

ADC Conversion Rate Configuration

The VMX51C1020's ADC conversion rate, when configured in continuous mode is defined by the 24-bit A/D Conversion Rate register that serves as the time base for triggering the ADC conversion process.

The following equation is used to calculate the value of the conversion rate.

Conversion Rate Equation:

Conversion rate registers value (24-bit) = $\frac{f_{OSC}}{Conv_Rate}$

The conversion rate register is accessible using three SFR registers as follows:

TABLE 104: (ADCCONVRLOW) ADC CONVERSION RATE REGISTER LOW BYTE -

Bit	Mnemonic	Function
7:0	ADCCONVRLOW	Conversion rate low byte
TABLE 10	5. (ADCCONVRMED) ADC (CONVERSION RATE REGISTER MED BYTE -
SFR A4H	, , ,	CONVERSION RATE REGISTER MED BYTE -
	5: (ADCCONVRMED) ADC (Mnemonic	CONVERSION RATE REGISTER MED BYTE -

IABLE 106: (ADCCONVRHIGH) ADC CONVERSION RATE REGISTER HIGH BYTE -SFR A5H

DIL	winemonic	Function
7:0	ADCCONVRHIGH	Conversion rate high byte

The following table provides examples of typical values versus conversion rate.

Conversion	ADC conv. rate register value.
Rate	Fosc= 14.74MHz
1Hz	E10000h
10Hz	168000h
100Hz	024000h
1kHz	003999h
2.5kHz	00170Ah
5kHz	000B85h
8kHz	000733h
10kHz	0005C2h

(CIMTR!

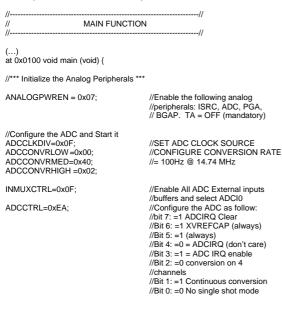
//disable ext0 interrupts

//Clear adc irq flag //prepare adc for next acquisition

// enable all interrupts

//Clear ADC interrupt

ADC Status Register


The ADC shares interrupt vector 0x6B with the Interrupt on Port 1 Change and the Compare and Capture Unit 3. To enable the ADC interrupt, the ADCIE bit of the ADCCTRL register must be set. Before or at the same time this bit is set, the ADCIRQCLR and the ADCIRQ bits must be cleared. The ADCPCIE bit of the IEN1 register must also be set, as well as the EA bit of the IEN0 register.

Once the ADC interrupt occurs, ADC Interrupt must be cleared by writing a '1' into the ADCINTCLR bit of the ADCCTRL register. The ADCIF flag in the IRCON register must also be cleared.

A/D Converter Example

The following provides example code for the A/D converter. The first section of the code covers interrupt setup/module configuration whereas the second section is the interrupt function itself.

Sample C code to setup the A/D converter:

ADC INTERRUPT ROUTINE

//----void int_adc (void) interrupt 13 {
idata int value = 0;

IEN0 &= 0x7F; ADCCTRL |=0x80;

//-

11

// Read ADC channel 0 value = ADCD0HI; value = valeur*256; value = valeur + ADCD0LO;

(...) // Read ADC channel 3 value = ADCD3HI; value = valeur*256; value = valeur + ADCD3LO;

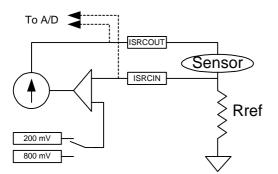
(...) IRCON &= 0xDF; ADCCTRL |=0xFA;

IEN0 |= 0x80; }// End of ADC IRQ

(...)

Warning:

When using the ADC, make sure the output multiplexer controlled by the TAEN bit of the ANALOGPWREN register (92h) is powered down at all times, otherwise, the signal present on the ISRCOUT can be routed back to the selected ADC input, causing conversion errors.


Programmable Current Source

The VMX51C1020 includes a programmable current source used to drive external devices such as resistive sensors connected between the ISRCOUT and ISRCIN pins

To ensure current output stability, the current source provides a feedback input, ISRCIN. The feedback is voltage controlled and can be dynamically set to either 200mV or 800mV. Placing a resistor between the ISRC pin and the ground defines the output current of the current source.

The VMX51C1020 current Source can drive currents up to $500\mu A$ when the reference is set to 800mV.

FIGURE 40: PROGRAMMABLE CURRENT SOURCE TO EXCITE SENSOR

As shown above, a resistive device (sensor) must be connected between the ISRCOUT and the ISRCIN.

In order to perform A/D conversion of the voltage present at the terminal of the current source, there is an internal link between each of the ISRCOUT and ISRCIN pins as well as the Input multiplexer of the A/D converter.

TABLE 107: (ISRCCAL1) CURRENT SOURCE CALIBRATION VECTOR FOR 200MV FEEDBACK VALUE - SFR BCH

7	6	5	4	3	2	1	0
PGACAL0	ISRCCAL1 [6:0]						

Bit	Mnemonic	Function
7	PGACAL0	Bit 0 of PGACAL
6:0	ISRCCAL1[6:0]	Calibration Value for ISRC feedback of 200mV

TABLE 108: (ISRCCAL2) CURRENT SOURCE CALIBRATION VECTOR FOR 800MV

FEEDBACK VALUE - SFR BDH									
7	6	5	4	3	2	1	0		
-	ISRCCAL2 [6:0]								

Bit	Mnemonic	Function
7	-	-
6:0	ISRCCAL2[6:0]	Calibration Value for ISRC feedback of 800mV

Current Source Setup Example

The following provides setup examples for the current source.

Enabling the Current Source using the 200mV reference:

ANALOGPWREN,#00110011B ;Enable Analog peripherals ;Bit 7: OPAMPEN = 0 Op-Amp OFF ;Bit 6: DIGPOTEN= 0 Dig Pot OFF ;Bit 5: ISRCSEL = 1 ISRC 800mV ;Bit 4: ISRCEN = 1 ISRC ON ;Bit 3: TAEN = 0 TA output OFF ;Bit 2: ADCEN = 0 ADC OFF ;Bit 1: PGAEN = 1 PGA ON ;Bit 0: BGAPEN = 1 BandGap ON

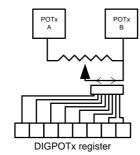
Enabling the Current Source using the 200mV reference:

;MOV

MOV

ANALOGPWREN,#00010011B

;Enable Analog peripherals ;Bit 7: OPAMPEN = 0 Op-Amp OFF ;Bit 6: DIGPOTEN= 0 Dig Pot OFF ;Bit 5: ISRCSEL = 0 ISRC 200mV ;Bit 4: ISRCEN = 1 ISRC ON ;Bit 3: TAEN = 0 TA output OFF ;Bit 2: ADCEN = 0 ADC OFF ;Bit 2: PGAEN = 1 PGA ON ;Bit 0: BGAPEN = 1 BandGap ON



Digital Potentiometers

The VMX51C1020 has two digital potentiometers that are controlled by DIGPOTx registers (DIGPOT1, DIGPOT2) that can be used in applications such as:

- o Gain control
- o Offset adjustment
- o A/D input attenuation
- o Digitally controlled filter

FIGURE 41: DIGITAL POTENTIOMETER FUNCTIONAL DIAGRAM

TABLE 109: (DIGPOT1) DIG. POTENTIOMETER 1 CONTROL REGISTER - SFR BAH								
7	6 5		5 4 3 2		2	1	0	
DIGPOT1 [7:0]								
Bit Mnemonic Fu				Function				
7-0	DIGPOT1			Potentiometer 1 Value				

 TABLE 110: (DIGPOT2) DIG. POTENTIOMETER 2 CONTROL REGISTER - SFR BBH

 7
 6
 5
 4
 3
 2
 1
 0

 DIGPOT2 [7:0]

Bit	Mnemonic	Function
7-0	DIGPOT2	Potentiometer 2 Value

The digital potentiometers are floating devices, meaning that there are no restrictions on the voltage present on their terminals as long as they are kept within the nominal operating range of the VMX51C1020.

The current flow through the potentiometers should be limited to 5mA max.

The digital potentiometer maximum nominal resistance is 30k +/- 2Kohms from device to device. On a given device the two digital potentiometer values usually match within 1%.

Before using the digital potentiometers, they must first be enabled by setting bit 6 of the ANALOGPWREN register (92h) to 1. The potentiometer value is governed by the following equation.

R _{potentiometer} * =	[256 - DIGPOTx[7:0]] x 30k
·	256
*Dotontiomotor voluo	

Digital Potentiometer Setup Example

Only two instructions are required to enable and configure the digital Potentiometers of the VMX51C1020:

value value

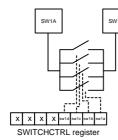
Operational Amplifier

The VMX51C1020 is equipped with an operational amplifier. This op-amp can be used for a wide array of analog applications such as:

- o Gain control
- o Offset Control
- o Reference buffering
- o Integrator
- o Other standard op amp applications

The op-amp on the VMX51C1020 has an openloop gain of 100dB; a unity gain bandwidth of 5MHz and it is able to drive a 1kO and 40pf load. The slew rate of the Op-Amp is $7V/\mu$ s and the output voltage can swing between 25mV and 4.975 Volts (10kO load).

To activate the Operational Amplifier, the OPAMPEN bit (bit 7) of the ANALOGPWREN register (SFR 92h) must be set to 1.


If the VMX51C1020 Op-Amp inputs are left floating, it should be kept in power down to prevent risk of oscillation.

<u>Ramtron</u>

Digitally Controlled Switches

The VMX51C1020 include a digital switch composed of 4 sub-switches connected in parallel. These sub-switches can be individually controlled by writing to the SFR register at B7h.

FIGURE 42: SWITCH FUNCTIONAL DIAGRAM

The switch "ON" resistance is between 50 and 100 Ohms depending on the number of subswitches being used. If, for example, one subswitch is closed, the switch resistance will be about 100 Ohms, and if all 4 switches are closed, the switch resistance will go down to about 50 Ohms.

TABLE 111: (SWITCHCTRL) USER SWITCHES CONTROL REGISTERS - SFR B7H								
	7	6	5	4	3	2	1	0
	Not U	sed but	implem	ented		SWTCH	11 [3:0]	

Bit	Mnemonic	Function
7:4	User Flags	Not used but implemented bits Can be used as general purpose storage
3:0	SWITCH1[3:0]	Switch 1 control (composed of 4 individual switches each bit controlled)

The upper 4 bits of the SWITCHCTRL register can be used as general purpose flags.

Analog Output Multiplexer

The VMX51C1020's analog output multiplexer is used for production test purposes and provides access to internal test points of the analog signal path.. It can however, be used in applications, but due to its high intrinsic impedance, care must be taken with respect to loading.

The analog output multiplexer shares its output with the current source output and therefore must be disabled when the current source or the ADC is used.

Inversely, when the analog output multiplexer is used, the current source must be powered down.

The following table summarizes the analog output multiplexer select line settings.

TABLE - SFR		JTMUXC	TRL) AN	ALOG OU	TPUT MULTIPLEXER	R CONTRO	OL REGISTER	
7 6 5 4 3 2 1 0								

-	-	-	-	-	TAOUTSEL [2:0]				
Bit	IVII	nemon	IC	FL	Inction				
7:3	Ur	nused		Ur	nused				
2:0	TA	TAOUTSEL[2:0]			gnal output on TA				
		TAOUTSEL[2:0]			00 – AIN0 01 – AIN1 0 – AIN2 1 – AIN3 00 – VBGAP 11 – reserved 0 – unused 1 – unused				

VMX51C1020 Interrupts

The VMX51C1020 is a highly integrated device incorporating a vast number of peripherals for which a comprehensive set of 29 interrupt sources sharing 12 interrupt vectors is available. Most of the VMX51C1020 peripherals can generate an interrupt, providing feedback to the MCU core that an event has occurred or a task has been completed.

The following features are key VMX51C1020 interrupt features.

- Each digital peripheral on the VMX51C1020 has an interrupt channel.
- The SPI, UARTs and I²C all have event specific flag bits.
- When the processor is in IDLE mode, an interrupt may be used to wake it up.
- The processor can run at full speed during interrupt routines.

The following table summarizes the interrupt sources, natural priority and the associated interrupt vector addresses of the VMX51C1020.

TABLE 113: INTERRUPT SOURCES AND NATURAL PRIORITY					
Interrupt	Interrupt Vector				
Reserved	0E43h				
INT0	0003h				
UART1	0083h				
TIMER 0	000Bh				
SPI Tx	004Bh				
INT1	0013h				
SPI RX & SPI RX OVERRUN / COMPINT0	0053h				
TIMER 1	001Bh				
I2C (Tx, Rx, Rx Overrun) / COMPINT1	005Bh				
UART0	0023h				
MULT/ACCU 32bit Overflow / COMPINT2	0063h				
TIMER 2: T2 Overflow, T2EX	002Bh				
ADC and interrupt on Port 1 change (8 int.) / COMPINT3	006Bh				

It is also possible to program the interrupts to wake-up the processor from an IDLE condition or force its clock to throttle up to full speed when an interrupt condition occurs.

Interrupt Enable Registers

The following tables describe the interrupt enable registers their associated bit functions:

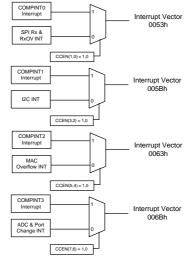
TABLE 114: (IEN0) INTERRUPT ENABLE REGISTER 0 - SFR A8H 7 6 5 4								
7		6	•					
	EA		WDT	T2IE	SOIE			
					1			
	3		2	1	0			
Т	1IE	11	NT1IE	TOIE	INTOIE			
Bit	Mnemor	nic	Function					
7	EA		General	Interrupt contro	d			
				ble all Enabled				
			1 = Auth	orize all Enable	d interrupts			
6	WDT		Watchdo	og timer refresh	flag. This bit			
			is used t	o initiate a refre	sh of the			
			watchdo	g timer. In orde	r to prevent			
			an uninte	entional reset, t	he watchdog			
			timer the user must set this bit					
			directly before SWDT.					
5	T2IE		Timer 2 Overflow / external Reload					
			interrupt					
			0 = Disable					
			1 = Enat	ole				
4	SOIE		Uart0 int	errupt.				
			0 = Disable					
			1 = Enat	ole				
3	T1IE		Timer 1	overflow interru	flow interrupt			
			0 = Disable					
			1 = Enat	1 = Enable				
2	INT1IE		External	Interrupt 1				
			0 = Disable					
			1 = Enable					
1	T0IE		Timer 0 overflow interrupt					
			0 = Disable					
			1 = Enat	le				
0	INT0IE		External	Interrupt 0				
			0 = Disa	ble				
			1 = Enat	ole				

Ral	MTR	SN

TABLE 115: (IEN1) INTERRUPT ENABLE 1 REGISTER -SFR E8H									
7 6		6	5	4					
T2E	EXIE	SM	/DT	MACOVIE					
	3		2	1	0				
120	CIE	SPIR	XOVIE	SPITEIE	reserved				
Bit	Mnem	onic	Function	on					
7	T2EXI	E	T2EX	interrupt Enable	e				
			0 = Dis						
			1 = En						
6	SWDT	-		dog timer start/					
				activate/refresh	0				
				When directly s					
			WDT, a watchdog timer refresh is						
_			performed. Bit SWDT is reset.						
5	ADCP	CIE	ADC and Port change interrupt						
				0 = Disable					
			1 = Enable						
4	MACC	IVIE	MULT/ACCU Overflow 32 bits						
			interrupt 0 = Disable						
			1 = Enable						
3	I2CIE		I2C Interrupt						
3	12CIE		0 = Disable						
				1 = Enable					
2	SPIRX		SPI Rx avail + Overrun						
2	51 1177		0 = Disable						
			1 = Enable						
1	SPITE	IF		Empty interrup	ot				
.			0 = Disable						
		1 = Enable							
0	reserv	ed							

	TABLE 116: (IE	N2) INTERRUPT	ENABLE 2 REGIS	STER - SFR 9AH
--	----------------	---------------	----------------	----------------

7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	S1IE


Bit	Mnemonic	Function
7-1	-	-
0	S1IE	UART 1 Interrupt 0 = Disable UART 1 Interrupt 1 = Enable UART 1 Interrupt

Timer2 Compare Mode Impact on Interrupts

The SPI RX (and RXOV), I²C, MULT/ACCU and ADC Interrupts are shared with the four Timer2 Compare and Capture Unit interrupts.

When the Compare and Capture Units of Timer2 are configured in Compare Mode via CCEN register, the Compare and Capture unit takes control of one interrupt vector as shown below.

The impact of this is that the corresponding peripheral interrupt, if enabled, will be blocked. The output signal from the comparison module will be routed to the Interrupt system and the control lines will be dedicated to the Compare and Capture unit.

This interrupt control "take over" is specific to each individual Compare and Capture unit. For example if Compare and Capture Unit number 2 is configured to generate a PWM signal on P1.2, the MULT/ACCU overflow interrupt, if enabled, will be dedicated to the Compare and Capture Unit number 2 and the SPI, I²C and ADC interrupts won't be affected.

Interrupt Status Flags

The IRCON register is used to identify the source of an interrupt. Before exiting the interrupt service routine, the IRCON register bit that corresponds with the serviced interrupt should be cleared.

TABLE 117: (IRCON) INTERRUPT REQUEST CONTROL REGISTER - SFR 91H								
7	6 5 4							
T2EXIF	T2IF	ADCIF	MACIF					
3	2	1	Δ					

3	Z		0
I2CIF	SPIRXIF	SPITXIF	Reserved

Bit	Mnemonic	Function
7	T2EXIF	Timer 2 external reload flag This bit informs the user whether an interrupt has been generated from T2EX, if the T2EXIE is enabled.
6	T2IF	Timer 2 interrupt flag
5	ADCIF / COMPINT3	A/D converter interrupt request flag/ port 0 change. / COMPINT3
4	MACIF / COMPINT2	MULT/ACCU unit interrupt request flag / COMPINT2
3	I2CIF / COMPINT1	I ² C interrupt request flag / COMPINT1
2	SPIRXIF / COMPINT0	RX available flag SPI + RX Overrun / / COMPINT0
1	SPITXIF	TX empty flag SPI
0	Reserved	Reserved

Interrupt Priority Register

All of the VMX51C1020's interrupt sources are combined into groups with four levels of priority.

These groups can be programmed individually to one of the four priority levels: from Level0 to Level3 with Level3 being the highest priority.

The IPO and IP1 registers serve to define the specific priority of each of the interrupt groups. By default, when the IPO and IP1 registers are at reset state 00h, the natural priority order of the interrupts shown previously are in force.

TABLE 118: (IP0) INTERRUPT PRIORITY REGISTER 0 - SFR B8H												
7	7 6			5	4		3	2		1		0
UF8		WDTSTA	ΛT				IP	0 [5:0	D]			
Bit	N	Inemonic	Fu	ncti	on							
7	U	IF8	Us	ser F	Flag b	oit						
6	V	VDTSTAT	Watchdog timer status flag. Set to 1 by hardware when the watchdog timer overflows. Must be cleared manually									
5	IF	P0.5	Tir	ner	2	-	Port1 nang		ADC			
4	IF	P0.4	UA	١RT	0		-		M	UL.	T/A	CCU
3	IF	P0.3	Tir	ner	1		-		120	С		
2	IF	P0.2	Ex IN	terr T1	nal		-		SPI RX available		9	
1	IF	P0.1		ner erru	-		-		SPI TX Empty			
0	IF	P0.0		terr T0	nal	UA	RT1			cter T C	nal)	

Table 119: (IP1) Interrupt Priority Register 1 - SFR B9h

7	6	5	4	3	3 2		0		
-	-		IP1 [5:0]						

Bit	Mnemonic	Function		
7	-	-		
6	-	-		
5	IP1.5	Timer 2	Port1 Change	ADC
4	IP1.4	UART0	-	MULT/ACCU
3	IP1.3	Timer 1	-	I2C
2	IP1.2	External INT1	-	SPI RX available
1	IP1.1	Timer 0 Interrupt	-	SPI TX Empty
0	IP1.0	External INT0	UART1	External INT 0

Configuring the IPO and IP1 registers makes it possible to change the priority order of the peripheral interrupts in order give higher priority to a given interrupt that belongs to a given group.

TABLE 120: INTERRUPT GROUPS				
Bit	Interrupt Group			
IP1.5, IP0.5	Timer 2	Port1 Change	ADC	
IP1.4, IP0.4	UART0	-	MULT/ACCU	
IP1.3, IP0.3	Timer 1	-	I2C	
IP1.2, IP0.2	External INT1	-	SPI RX available	
IP1.1, IP0.1	Timer 0 Interrupt	-	SPI TX Empty	
IP1.0, IP0.0	External INT0	UART1	External INT 0	

RAMTRON

The respective values of the IP1.x and IP0.x bits define the priority level of the interrupt group vs. the other interrupt groups as follows.

TABLE 121: INTERRUPT PRIORITY LEVEL

IP1.x IP0.x		Priority Level
0	0	Level 0 (Low)
0	1	Level 1
1	0	Level 2
1	1	Level 3 (High)

The WDTSTAT bit of the IP0 register is the Watchdog status flag and is set to 1 by the hardware whenever a Watchdog Timer overflow occurs. This bit must be cleared manually.

Finally, bit 7 of the IP0 register can be used as a general purpose user flag.

Setting up INT0 and INT1 Interrupts

The IT0 and IT1 bits of the TCON register define whether external interrupts 0 and 1 will be edge or level triggered.

When an interrupt condition occurs on INT0 or INT1, the associated interrupt flag IE0 or IE1 will be set. The interrupt flag is automatically cleared when the interrupt is serviced.

TABLE 122: (TCON)	TIMER 0, TIMER 1 TIMER/COUNTER CONTROL - SFR 88H

	7	6		5	4
Т	TF1		TR1	TF0	TR0
	3		2	1	0
	IE1		IT1	IE0	IT0
Bit	Mnemonic		Function		
7	TE1		Timor 1 o	vorflow flog oot by	hordwore

Bit	Mnemonic	Function
7	TF1	Timer 1 overflow flag set by hardware when Timer 1 overflows. This flag can be cleared by software and is automatically cleared when interrupt is processed.
6	TR1	Timer 1 Run control bit. If cleared Timer 1 stops.
5	TFO	Timer 0 overflows flag set by hardware when Timer 0 overflows. This flag can be cleared by software and is automatically cleared when interrupt is processed.
4	TR0	Timer 0 Run control bit. If cleared timer 0 stops.
3	IE1	Interrupt 1 edge flag. Set by hardware when falling edge on external INT1 is observed. Cleared when interrupt is processed.
2	IT1	Interrupt 1 type control bit. Selects falling edge or low level on input pin to cause interrupt.
1	IE0	Interrupt 0 edge flag. Set by hardware when falling edge on external pin INT0 is observed. Cleared when interrupt is processed.
0	ITO	Interrupt 0 type control bit. Selects falling edge or low level on input pin to cause interrupt.

INT0 example

The following provides example code for interrupt setup and module configuration.

//
// Sample C code to setup INT0 //
#pragma TINY #include <vmixreg.h></vmixreg.h>
at 0x0100 void main (void) {
// INT0 Config
TCON = 0x01; //Interrupt on INT0 will be caused by a High->Low //edge on the pin
// Enable INT0 interrupts IEN0 = 0x80; // Enable all interrupts IEN0 = 0x01; // Enable interrupt INT0
// Wait for INT0 do { }while(1); //Wait for INT0 interrupts
}//end of main function
//
// Interrupt Function
void int_ext_0 (void) interrupt 0
IEN0 &= 0x7F; // Disable all interrupts
/* Put the Interrupt code here*/
IEN0 = 0x80; // Enable all interrupts }

INT1 example

The following code example shows the INT1 interrupt setup and module configuration:

//	
// Sample C code to setup IN	JT1
// #pragma TINY #include <vmixreg.h></vmixreg.h>	
at 0x0100 void main (void) {	
// INT1 Config	
TCON = 0x04	; //Interrupt on INT1 will be caused by a High->Low //edge on the pin
// Enable INT1 interrupts	
IEN0 = 0x80; IEN0 = 0x04;	// Enable all interrupts // Enable interrupt INT1
// Wait for INT1 do { }while(1); //	Wait for INT1 interrupts
// Interrupt function	
void int_ext_1 (void) interrup	ot 2
{ IEN0 &= 0x7F;	// Disable all interrupts
/* Put the Interrupt code here	e*/
IEN0 = 0x80;	// Enable all interrupts

RAMTRON

UART0 and UART1 Interrupt Example

The following program examples demonstrate how to initialization the UART0 and UART1 interrupts.

// Sample C	code for UART0 and UAR	T1 interrupt ex	xample
// #pragma TII #include <vr< td=""><td></td><td></td><td></td></vr<>			
void txmit0(void txmit1(void uart1Co void uart0ws // - Constant	s0relcfg(void);	541.	
//			
	MAIN FUNCTION	l 	
at 0x0100 v	void main (void) {		
	<pre>// Enable and configure th uart0ws0relcfg(); uart1Config();</pre>	e UART0 & I //Configure //Configure	UART1 UART0 UART1
//*** Configu	IF the interrupts IEN0 = 0x91; IEN2 = 0x01; do		NRT0 Int + enable all int NRT1 Interrupt
	{ }while(1); // End of main()	//Wait for U	ARTs interrupts
// //	INTERRUPT ROUTINE	 S	
//			
// UART0 int //	terrupt haracter received in S0BU		
// back on U	ART0		
	t0 (void) interrupt 4 {		
	IEN0 &= 0x7F;		//disable All interrupts
// The onl	y UART0 interrupt source is txmit0(S0BUF);	s Rx	// Return the character //received on UART0
	S0CON = S0CON & 0xF0 IEN0 = 0x80; }// end of UART0 interrup		//clear R0I & T0I bits // enable all interrupts
// UART1 int	terrupt		
// // Retrieve c // back on U // //	haracter received in S1BU	F and transmi	t it
	t1 (void) interrupt 16 {		
	IEN0 &= 0x7F;		//disable All interrupts
// The only	y UART1 interrupt source is txmit1(S1BUF);	s Rx	// Return the character
	S1CON = S1CON & 0xF0 IEN0 = 0x80;	C;	// received on UART1 // clear both R1I & T1I bits // enable all interrupts
}// end of U/	ART1 interrupt		

}// end of UART1 interrupt

Note: See UART0 / UART1 section for configuration examples and TXMITx functions

Interrupt on P1 Change

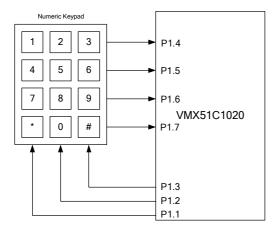
The VMX51C1020 includes an Interrupt on Port change feature, which is available on the Port1 pins of the VMX51C1020.

This feature is like having eight extra external interrupt inputs sharing the ADC interrupt vector at address 006Bh and can be very useful for applications such as switches, keypads, etc.

To activate this interrupt, the bits corresponding to the pins being monitored must be set in the PORTIRQEN register. The ADCPCIE bit in the IEN1 register must be set as well as the EA bit of the IEN0 register.

TABLE 123: (PORTIRQEN) PORT CHANGE IRQ CONFIGURATION - SFR 9FH				
7	6	5	4	
P17IEN	P16IEN	P15IEN	P4IEN	

3 2			1	0	
P13IEN P12IE		N	P11IEN	P10IEN	
Bit	Mnemonic		Fund	ction	
7	P17IEN		Port	1.7 IRQ on cha	nge enable


		. dilotion
7	P17IEN	Port 1.7 IRQ on change enable 0 = Disable 1 = Enable
6	P16IEN	Port 1.6 IRQ on change enable 0 = Disable 1 = Enable
5	P15IEN	Port 1.5 IRQ on change enable 0 = Disable 1 = Enable
4	P14IEN	Port 1.4 IRQ on change enable 0 = Disable 1 = Enable
3	P13IEN	Port 1.3 IRQ on change enable 0 = Disable 1 = Enable
2	P12IEN	Port 1.2 IRQ on change enable 0 = Disable 1 = Enable
1	P11IEN	Port 1.1 IRQ on change enable 0 = Disable 1 = Enable
0	P10IEN	Port 1.0 IRQ on change enable 0 = Disable 1 = Enable

The PORTIRQSTAT register monitors the occurrence of the Interrupt on port change. This register serves to define which P1 pin has changed when an interrupt occurs.

<u>Ramtron</u>

TABLE 124	4: (PORTIR	QSTAT) POP	RT CHAN	GE IRQ STATUS - SFF	R А1н			
7		6		5	4			
P17	ISTAT	P16IS	TAT	P15ISTAT	P14ISTAT			
				-				
	3	2		1	0			
P13I	STAT	P12IS	TAT	P11ISTAT	P10ISTAT			
Bit	Mnemo		Fund					
7	P17IS	ΓΑΤ		1.7 changed				
			0 = 1					
6	P16IS		1 =					
0	P 1015	IAI	0 = 1	1.6 changed				
5	P15IS	ГАТ	1 = Yes Port 1.5 changed					
Ŭ	1 1010	.,,,,	0 = No					
			1 = Yes					
4	P14IS	ΓΑΤ	Port 1.4 changed					
			0 = No					
			1 = Yes					
3	P13IS	ΓΑΤ		1.3 changed				
			0 = 1					
_			1 = `					
2	P12IS	IAI		1.2 changed				
			0 = 1 1 = 1					
1	P11IS	глт						
'	PINSIAI		0 = 1	1.1 changed				
			1 = 1					
0	P10IS	ГАТ	Port 1.0 changed					
-		-	0 = 1					
1			1 = 1	Yes				

FIGURE 44: APPLICATION EXAMPLE OF PORT CHANGE INTERRUPT

The following provides an assembler example for configuration of the Interrupt on Port1 pin change and how it is shared with the ADC interrupt.

include VMI) ;*** INTERR ORG 0000H ORG 006BH	UPT VECTOR	RS JUMP TABLE * ;BOOT ORIGIN VECTOR START ;INT ADC and P1 change INT_ADC_P1	interrupt
;*** MAIN PF ORG 010			
START:	MOV MOV	DIGPWREN,#01H P2PINCFG,#0FFH	;ENABLE TIMER 2
;*** Initialise	Port change MOV MOV	interrupt on P1.0 - P1.7 PORTIRQSTAT,#00H PORTIRQEN,#11111111	3
;*** Initialise	the ADC, BG MOV	AP, PGA Operation ANALOGPWREN,#07h	
	as ADC input MOV MOV MOV MOV	t + Enable input buffer + Ad INMUXCTRL,#0Fh ADCCLKDIV,#0Fh ADCCONVRLOW,#000h rsion Rate	c clk
-	MOV MOV MOV	ADCCONVRMED,#080h ADCCONVRHIGH,#016h ADCCTRL,#11111010b	
;***Activate	All interrupts - MOV	⊢ (serial port for debugger s IEN0,#090H	upport)
;*** Enable A	ADC interrupt MOV	IEN1,#020H	
;***Wait IRQ WAITIRQ:		WAITIRQ	
ORG 020	Dh	*****	****
;*************************************	TINE: IR	QADC + P1Change	*******
;*************************************	ΓINE: IR	QADC + P1Change	****
* IRQ ROU INT_ADC_P	TINE: IR 1: ;MOV IRQ was caus	QADC + P1Change	****
Check if i ;Check if i ;***If PORTII	FINE: IR ;MOV IRQ was caus RQSTAT = 00 MOV JZ pt was caused	QADC + P1Change IEN0,#00h ;DISABLE A sed by Port Change h -> IRQ comes from ADC A,PORTIRQSTAT	****
INT_ADC_P	TINE: IR ;MOV IRQ was caus RQSTAT = 00 MOV JZ pt was caused rG: MOV	QADC + P1Change IEN0,#00h ;DISABLE A sed by Port Change h -> IRQ comes from ADC A,PORTIRQSTAT CASE_ADC	LL INTERRUPT
* IRQ ROUT INT_ADC_P ;***Check if I ;***If PORTII ;***If interru CASE_POCH ;*** Perform	TINE: IR ;MOV IRQ was caus RQSTAT = 00 MOV JZ pt was caused HG: MOV other instruct	QADC + P1Change IEN0,#00h ;DISABLE A sed by Port Change h -> IRQ comes from ADC A,PORTIRQSTAT CASE_ADC d by Port 1, change PORTIRQSTAT,#00H ions related to Port1 change	LL INTERRUPT
* IRQ ROUT INT_ADC_P ;***Check if I ;***If PORTII ;*** If interru CASE_P0CH ;*** Perform ;*** Jump to	TINE: IR ;MOV IRQ was cause RQSTAT = 00 MOV JZ pt was caused G: MOV other instruct ;() Interrupt end AJMP pt was caused	QADC + P1Change IEN0,#00h ;DISABLE A sed by Port Change h -> IRQ comes from ADC A,PORTIRQSTAT CASE_ADC d by Port 1, change PORTIRQSTAT,#00H ions related to Port1 change	LL INTERRUPT
INT_ADC_P INT_ADC_P	TINE: IR TINE: IR TINE: IR MOV IRQ was caused MOV JZ pt was caused HG: MOV other instruct ;() Interrupt end AJMP pt was caused : ANL OC interrupt fla ORL	QADC + P1Change IEN0,#00h ;DISABLE A ted by Port Change Dh -> IRQ comes from ADC A,PORTIRQSTAT CASE_ADC d by Port 1, change PORTIRQSTAT,#00H ions related to Port1 change ENDADCP1INT d by ADC ADCCTRL,#11110011b ags & Reset ADC for next a ADCCTRL,#080h	LL INTERRUPT
* IRQ ROUT * IRQ ROUT INT_ADC_P ****Check if I ;***If PORTII ;*** If interru CASE_POCH ;*** Jump to ;*** Jump to ;*** If interru CASE_ADC ;***Reset ADC	TINE: IR TINE: IR MOV IRQ was cause MOV JZ pt was caused G: MOV other instruct () Interrupt end AJMP pt was caused AML Co interrupt fla ORL ORL	QADC + P1Change IEN0,#00h ;DISABLE A sed by Port Change h -> IRQ comes from ADC A,PORTIRQSTAT CASE_ADC d by Port 1, change PORTIRQSTAT,#00H ions related to Port1 change ENDADCP1INT d by ADC ADCCTRL,#11110011b ags & Reset ADC for next a	LL INTERRUPT
*** IRQ ROUT ***Check if I ****If PORTII **** If interru CASE_POCI **** Jump to **** Jump to **** Jump to **** Reset AE **** Perform *()	TINE: IR TINE: IR TINE: IR MOV IRQ was cause MOV JZ pt was caused HG: MOV other instruct () Interrupt end AJMP pt was caused C interrupt fa ORL ORL ORL ORL ORL OC and Port 1 INT:	QADC + P1Change IEN0,#00h ;DISABLE A ted by Port Change Dh -> IRQ comes from ADC A,PORTIRQSTAT CASE_ADC d by Port 1, change PORTIRQSTAT,#00H ions related to Port1 change ENDADCP1INT d by ADC ADCCTRL,#11110011b ags & Reset ADC for next a ADCCTRL,#1080h ADCCTRL,#111101b ions related to Port1 change Change interrupt	LL INTERRUPT
*** IRQ ROUT ***Check if interru CASE_POCI ;*** If interru CASE_POCI ;*** Perform ;*** Jump to ;*** Jump to ;*** Reset ADC ;*** Reset ADC ;*** Perform ;() ;** End of AI ENDADCPO	TINE: IR TINE: IR SMOV IRQ was cause RQSTAT = 00 MOV JZ pt was caused G: MOV other instruct () Interrupt end AJMP pt was caused C interrupt fla ORL ORL ORL ORL ORL OCL OCL OCL OCL OCL OCL OCL OC	QADC + P1Change IEN0,#00h ;DISABLE A sed by Port Change h -> IRQ comes from ADC A,PORTIRQSTAT CASE_ADC d by Port 1, change PORTIRQSTAT,#00H ions related to Port1 change ENDADCP1INT d by ADC ADCCTRL,#11110011b ags & Reset ADC for next ar ADCCTRL,#080h ADCCTRL,#1111010b ions related to Port1 change Change interrupt IRCON,#11011111b	LL INTERRUPT
*** IRQ ROUT ***Check if interru CASE_POCI ;*** If interru CASE_POCI ;*** Perform ;*** Jump to ;*** Jump to ;*** Reset ADC ;*** Reset ADC ;*** Perform ;() ;** End of AI ENDADCPO	TINE: IR TINE: IR TINE: IR MOV IRQ was cause MOV JZ pt was caused HG: MOV other instruct () Interrupt end AJMP pt was caused C interrupt fa ORL ORL ORL ORL ORL OC and Port 1 INT:	QADC + P1Change IEN0,#00h ;DISABLE A sed by Port Change h -> IRQ comes from ADC A,PORTIRQSTAT CASE_ADC d by Port 1, change PORTIRQSTAT,#00H ions related to Port1 change ENDADCP1INT d by ADC ADCCTRL,#11110011b ags & Reset ADC for next ar ADCCTRL,#080h ADCCTRL,#1111010b ions related to Port1 change Change interrupt IRCON,#11011111b	LL INTERRUPT

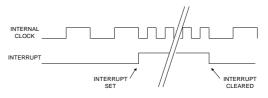
The Clock Control Circuit

The VMX51C1020's clock control circuit allows dynamic adjustment of the clock from which the processor and the peripherals derive their clock source. This allows reduction of overall power consumption by modulating the operating frequency according to processing requirements or peripheral use.

A typical application for this can be portable acquisition systems in which significant power savings can be achieved by lowering the operating frequency between A/D conversions and automatically throttling it back to full speed when an A/D interrupt is generated. Note that A/D converter operation is not affected by the Clock Control Unit.

The clock control circuit allows adjusting the System clock from [Fosc/1] (full speed) down to [Fosc/512]. The clock division control is done via the CLKDIVCTRL register located at address 94h of the SFR register area.

TABLE 125: (CLKDIVCTRL) CLOCK DIVISION CONTROL REGISTER -SFR 94H						
7	6	5	4			
SOFTRST	-	-	IRQNORMSPD			


3	2	1	0
	MCKDI	V [3:0]	

Bit	Mnemonic	Function
7	SOFTRST	Writing 1 into this bit location provokes a reset. Read as a 0
6:5	-	-
4	IRQNORMSPD	0 = Full Speed in IRQ 1 = Selected speed during IRQs
3:0	MCKDIV [3:0]	Master Clock Divisor 0000 – Sys CLK 0001 = SYS /2 0010 = SYS /4 0011 = SYS /8 0100 = SYS /16 0101 = SYS /32 0110 = SYS /64 0111 = SYS /128 1000 = SYS /256 1001 = SYS /512 ()

The value written into the lower nibble of the CLKDIVCTRL register, MCKDIV[3:0], defines the clock division ratio.

When the IRQNORMSPD bit is cleared, the VMX51C1020 will run at the maximum operating speed when an interrupt occurs (see following figure).

FIGURE 45: CLOCK TIMING WHEN AN INTERRUPT OCCURS

Once the interrupt is cleared, the VMX51C1020 returns to the selected operating speed as defined by the MCKDIV [3:0] bits of the CLKDIVCTRL register.

When the IRQNORMSPD bit is set, the VMX51C1020 will continue to operate at the selected speed as defined by the MCKDIV [3:0] bits of the CLKDIVCTRL register.

Note: With the exception of the A/D converter and analog only peripherals such as the current source, potentiometers and opamp, all the peripheral operating speeds are affected by the Clock Control circuit

Software Reset

Software reset can be generated by setting the SOFTRST bit of the CLKDIVCTRL register to 1.

RAMTRON

Power-on/Brown-Out Reset

The VMX51C1020 includes a Power-On-Reset/Brown-Out detector circuit that ensures the VMX51C1020 enters and stays in the reset state as long as the supply voltage is below the reset threshold voltage (order of 3.7 - 4.0 Volts).

In most applications, the VMX51C1020 requires no external components to perform a Power-on Reset when the device is powered on.

The VMX51C1020 includes a RESET input for applications in which external Reset control is required. The reset pin includes an internal pullup resistor. When a Power-on reset occurs, all SFR locations return to their default values and peripherals are disabled.

Errata Note:

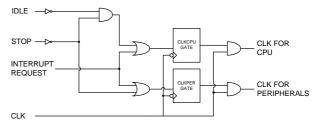
The VMX51C1020 may fail to exit the reset state if the supply voltage drops below the reset threshold, but not below 3V. For applications where this condition can occur, use an external supply monitoring circuit to reset the device.

Processor Power Control

The processor power management unit has two modes of operation: IDLE and STOP mode.

IDLE Mode

When the VMX51C1020 is in IDLE mode, the processor clock is halted. However, the internal clock and peripherals continue to run. The power consumption drops because the CPU is not active. As soon as an interrupt or reset occurs, the CPU exits the IDLE mode.


In order to enter IDLE mode, the user must set the IDLE bit of the PCON register. Any enabled interrupts will force the processor to exit IDLE mode

STOP Mode

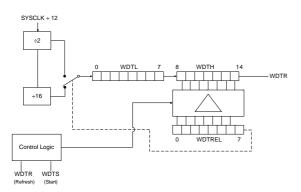
In this mode, in contrast to IDLE mode, all internal clocking shuts down. In order to enter STOP mode, the user must set the STOP bit of the PCON register. The CPU will exit this state only when a non-clocked external interrupt or reset occurs (internal interrupts are not possible because they require clocking activity).

The following interrupts can restart the processor from STOP mode: Reset, INT0, INT1, SPI Rx/Rx Overrun, and the I²C interface.

The following table describes the power control register of the VMX51C1020.

TABLE 126: (PCON) POWER CONTROL (CPU) - SFR 87H								
7	6	5	4	3	2	1	0	
SMOD	-	-	-	GF1	GF0	STOP	IDLE	

Bit	Mnemonic	Function
7	SMOD	The speed in Mode 2 of Serial Port 0 is controlled by this bit. When SMOD= 1, f_{clk} (32. This bit is also significant in Mode 1 and 3, as it adds a factor of 2 to the baud rate.
6	-	-
5	-	-
4	-	-
3	GF1	Not used for power management
2	GF0	Not used for power management
1	STOP	Stop mode control bit. Setting this bit turns on the STOP Mode. STOP bit is always read as 0.
0	IDLE	IDLE mode control bit. Setting this bit turns on the IDLE mode. IDLE bit is always read as 0.



Watchdog Timer

The VMX51C1020's Watchdog Timer is used to monitor program operation and reset the processor in the case where the program code would not be able to refresh the Watchdog before its timeout period has lapsed. This can come about from an event that results in the Program Counter executing faulty or incorrect code and inhibiting the device from doing its intended job.

The Watchdog Timer consists of a 15-bit counter composed of two registers (WDTL and WDTH) and a reload register (WDTREL). See following figure.

FIGURE 47: WATCH DOG TIMER

The WDTL and WDTH registers are not accessible from the SFR register. However the WDTREL register makes it possible to load the upper 6 bits of the WDTH register.

The PRES bit of the WDTREL register selects the Clock prescaler that is fed into the Watchdog Timer.

When PRES = 0, the clock prescaler = 24 When PRES = 1, the clock prescaler = 384

TABLE 127: (V	VDTREL)	NATCHDO	G TIMER RE	ELOAD REC	SISTER - SP	R D9H	
7	6	5	4	3	2	1	
PRES			WDT	REL [6	:0]		

0

Bit	Mnemonic	Function
7	PRES	Pre-scaler select bit. When set, the Watchdog is clocked through an additional divide-by-16 pre-scaler.
6-0	WDTREL	7-bit reload value for the high-byte of the Watchdog timer. This value is loaded into the WDT when a refresh is triggered by a consecutive setting of bits WDT and SWDT.

TABLE 128: (IP0) INTERRUPT PRIORITY REGISTER 0 - SFR B8H												
7		6		5	4		3	2			1	0
UF8		WDTSTA	ΛT				IP	0 [5:	0]			
Bit	N	Inemonic	Fu	ncti	on							
7	ι	IF8	Us	ser F	Flag I	oit						
6	V	VDTSTAT	Watchdog timer status flag. Set by hardware when the watchdo timer overflows. Must be cleare manually					dog				
5	IF	P0.5	Tir	ner	2	Port1 Change ADC						
4	IF	P0.4	UA	١RT	0		-		М	UĽ	T/A	CCU
3	IF	P0.3	Tir	ner	1		-		12	С		
2	IF	P0.2						l RX aillable				
1	IF	P0.1	Timer 0 SPI TX Interrupt Empty									
0	IF	P0.0		xternal UART1 Exter					al			

The WDTSTAT bit of the IP0 register is the Watchdog status flag. This bit is set to 1 by the hardware whenever a Watchdog Timer overflow occurs. This bit must be cleared manually.

Setting-up the Watchdog Timer

Control of the Watchdog Timer's is enabled by the following bits:

Bit	Location	Role
WDOGEN	DIGPWREN.6	Watchdog timer Enable
WDTR	IEN0.6	Watchdog timer refresh flag
WDTS	IEN1.6	Watchdog Timer Start bit

In order for the Watchdog to begin counting, the user must set the WDOGEN bit (bit 6) of DIGPWREN register, as follows:

MOV DIGPWREN,#x1xxxxxB

;x=0 or 1 depending ;of other peripherals ;to enable

'AMTR'

The value written into the WDTREL register defines the Delay Time of the Watchdog Timer asfollows:

WDT delay when the WDTREL bit 7 is cleared					
WDT Delay =	24*[32768–(WDTREL(6:0) x 256)]				
	Fosc				
WDT delay when the WDTREL bit 7 is set					
WDT Delay =	384 <u>*[32768–(WDTREL(6:0) x 256)]</u>				

Fosc

The following table provides WDT reload values and their corresponding delay times

Fosc	WDTREL	WDT Delay
14.74MHz	00h	53.3ms
14.74MHz	4Fh	20.4ms
14.74MHz	CCh	347ms

Note: The value present in the CLKDIVCTRL Register affects the Watchdog Timer Delay time. The above equations and examples assume that the CLKDIVCTRL register content is 00h

Starting the Watchdog Timer

To start the Watchdog timer using the hardware automatic start procedure, the WDTS (IEN1) and WDTR (IEN0) bits must be set. The Watchdog will begin to run with default settings, i.e. all registers will be set to zero.

;*** Do a Watchdog Timer Refresh / Start sequence

SETB	IEN0.6	;Set the WDTR bit first
SETB	IEN1.6	;Then without delay set the
;WDTS bit		

When the WDT registers enter the state 7FFFh, the asynchronous signal, WDTS will become active. This signal will set bit 6 in the IP0 register and trigger a reset.

To prevent the Watchdog Timer from resetting the VMX51C1020, you must reset it periodically by clearing the WDTR and, immediately afterwards, clear the WDTS bit.

As a security feature to prevent inadvertent clearing of the Watchdog timer, no delay (instruction) is allowed between the clearing of the WDTR and the WDTS bits.

a) Watchdog Timer refresh example 1:

*** The Simple way ***

MOV	IEN0,#x1xxxxxB	;DIRECT WRITE THAT SET BIT
MOV	IEN1,#x1xxxxxB	;WDTR (x = 0 or 1) ;DIRECT WRITE THAT SET BIT ;WDTS (x = 0 or 1)

In the case where the program makes use of the interrupts, it is recommended to deactivate interrupts before the Watch Dog refresh is performed and reactivate them afterwards.

b) Watch Dog Timer refresh example 2:

*** If Interrupts are used: ***

Watchdog Timer Reset

To determine whether the Reset condition was caused by the Watchdog Timer, the state of the WDTSTAT bit of the IP0 register should be monitored. On a standard power on reset condition, this bit is cleared.

RAMTRL

WDT Initialization and Use Example Program

ORG 0000H LJMP ;RESET & WD IRQ VECTOR START

* MAIN PROGRAM BEGINNING

ORG 0100h

* Initialize WDT and other peripherals*** MOV DIGPWREN.#40H :ENABLE WDT OPERATION

;*** INITIALIZE WATCHDOG TIMER RELOAD VALUE ;The WDTREL register is used to ;define the Delay Time WDT. ;Bit 7 of WDTREL define clock MOV WDTREL,#04FH prescalng value Bit 6:0 of WDTREL defines the :upper 7 bits reload value of the ;watchdog Timer 15-bit timer

;*** PERFORM A WDT REFRESH/START SEQUENCE ;Set the WDTR bit first SETB IEN0.6

Then without delay (instruction); set the WDTS bit right after. SETB IEN1 6

;No Delays are permitted between ;setting of the WDTR bit and setting of the WDTS bit. This is a security feature to prevent inadvertent reset/start of ;the WDT

;IF other interrupt are enabled, :It is recommended to disable interrupts before refreshing the WDT and reactivate them after

;*** Wait WDT Interrupt

WAITWDT:

NOP

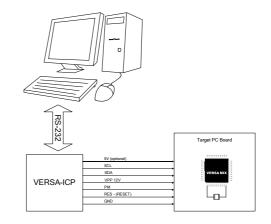
;*** If the two following code lines below are put "in-comment", the ;***WDT will trigger a reset, and the program will restart.

;*** PERFORM A WATCHDOG TIMER REFRESH/START SEQUENCE ;SETB IEN0.6 IEN1.6 ;Set the WDTR bit first ;Then without delay (instruction) SETB

LJMP	WAITWDT		

;set the WDTS bit right after. ;No Delays are permitted between setting of the WDTR bit and ;setting of WDTS bit. This is a security feature to prevent inadvertent reset/start of the WDT ;It is recommended to disable ;interrupts before refreshing the ;WDT and reactivate them after

VMX51C1020 Programming


When the PM pin is set to 1, the I²C interface becomes the programming interface for the VMX51C1020's Flash memory.

An In-circuit programming interface is easy to implement at the board level. See VMIX APP-Note001.

Erasing and programming the VMX51C1020's memory requires Flash an external programming voltage of 12V. This programming voltage is supplied/controlled the by programming hardware/tools.

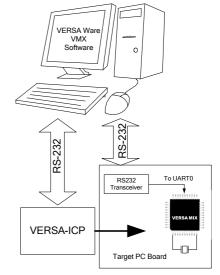
The VMX51C1020 can be programmed using the Ramtron In-Circuit Programmer.

FIGURE 48: VMX51C1020 PROGRAMMING

RAMTRON

VMX51C1020 Debugger

The VMX51C1020 includes hardware Debugging features that speed-up embedded software development time.


Debugger Features

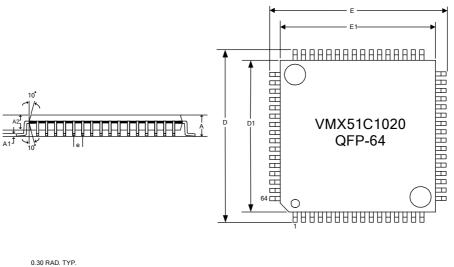
The VMX51C1020 Debugger supports breakpoints and single-stepping of the user program. It supports retrieval and editing of the contents of the SFR Registers and RAM memory contents when a breakpoint is reached or when the device operates in single-step mode. Unlike ROM monitor programs that execute user program instruction at a much lower speed, the VMX51C1020 Debugger does not affect program operating speed when in "Run Mode" before encountering a breakpoint.

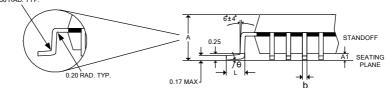
Debugger Hardware Interface

The VMX51C1020's Development System provides the ideal platform for running the Debugger. Interfacing to the VMX51C1020's Debugger is done via the UART0 serial interface.

It is possible to run the VMX51C1020 Debugger on the end user PCB provided that access to the VMX51C1020's UART0 is available. However, a connection to a stand alone In-Circuit Programmer (ICP) will be required to perform Flash programming, control of the Reset line, and to activate the Debugger on the target VMX51C1020 device. FIGURE 49: VMX51C1020 DEBUGGER HARDWARE INTERFACE

Debugger Software Interface


The VERSA WARE VMX51C1020 / VERSA1 Windows[™] software provides an easy to use user interface for In-Circuit Debugging


For more details on the VMX51C1020 Debugger, see the "VERSA WARE VMX51C1020 - V1 Software User Guide.pdf"

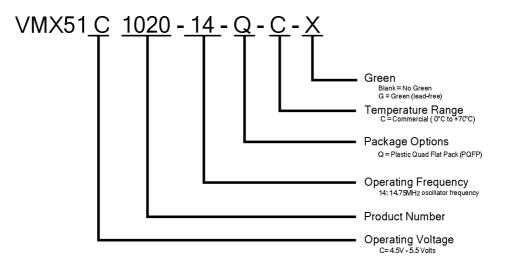
All documents are accessible on the Ramtron Inc. website at <u>www.ramtron.com</u>

VMX51C1020 64 pin Quad Flat Package

		BODY +3.20mm Footprint
PACKAGE	THICKNESS	2.00
Dims.	TOLS.	64L
A	MAX.	2.35
A1		0.25MAX
A2	+.10/05	2.00
D	±.25	17.20
D1	±.10	14.00
E	±.25	17.20
E1	±.10	14.00
L	+.15/10	.88
e	BASIC	.80
b	±.05	.35
θ		0º-7º

NOTES:

1) ALL DIMENSIONS ARE IN MILLIMETERS


2) DIMENSIONS SHOWN ARE NOMINAL WITH TOLERANCES AS INDICATED.

3) FOOT LENGTH "L" IS MEASURED AT GAGE PLANE, 0.25 ABOVE SEATING PLANE

Ordering Information

Device Number Structure

VMX51C1020 Ordering Options

Device Number	Package Option	Operating Voltage	Temperature	Frequency
VMX51C1020-14-QC	QFP-64	4.75V to 5.5V	0°C to +70°C	14.75MHz
VMX51C1020-14-QCG	QFP-64	4.75V to 5.5V	0°C to +70°C	14.75MHz

*See Errata information below

VMX51C1020 Errata

The VMX51C1020 operating frequency and temperature range have been revised with more conservative values.

The maximum operating frequency specifications of the VMX51C1020 has been revised to 14.75MHz and its operating temperature range to 0°C to 70°C.

These new specifications affect all the VMX51C1020 devices with the markings of VMX51C1020-QAI16.

In order to reflect the specification updates of the VMX51C1020, the new VMX51C1020 devices that have the same silicon version, features and performances as the VMX51C1020-QAI16 will now be marked VMX51C1020-QAC14.

Disclaimer

Right to make changes - Ramtron reserves the right to make changes to its products - including circuitry, software and services - without notice at any time. Customers should obtain the most current and relevant information before placing orders. **Use in applications** - Ramtron assumes no responsibility or liability for the use of any of its products, and conveys no license or title under any patent, copyright or mask work right to these products and makes no representations or warranties that these products are free from patent, copyright or mask work right infringement unless otherwise specified. Customers are responsible for product design and applications using Ramtron parts. Ramtron assumes no liability for applications assistance or customer product design.

Life support – Ramtron products are not designed for use in life support systems or devices. Ramtron customers using or selling Ramtron products for use in such applications do so at their own risk and agree to fully indemnify Ramtron for any damages resulting from such applications.

Note:

PC is a registered trademark of IBM Corp. Windows is a registered trademark of Microsoft Corp. I2C is a registered trademark of Philips Corporation. SPI is a registered trademark of Motorola Inc. All other trademarks are the property of their respective owners.